期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于组稀疏学习与AVOA-XGBoost的轴承故障分级诊断
被引量:
2
1
作者
张吉祥
张孟健
+1 位作者
王德光
杨明
《振动与冲击》
EI
CSCD
北大核心
2024年第18期96-105,共10页
针对工业设备中轴承振动信号在噪声环境下故障分级诊断准确率低的问题,提出一种基于组稀疏学习与非洲秃鹫优化算法优化极端梯度提升树(African vultures optimization algorithm-extreme gradient boosting,AVOA-XGBoost)的轴承故障分...
针对工业设备中轴承振动信号在噪声环境下故障分级诊断准确率低的问题,提出一种基于组稀疏学习与非洲秃鹫优化算法优化极端梯度提升树(African vultures optimization algorithm-extreme gradient boosting,AVOA-XGBoost)的轴承故障分级诊断方法。首先,利用组稀疏学习对轴承振动信号进行重构,以降低噪声水平并更有效地表征故障脉冲。然后,对重构后的信号提取时域、频域和熵值特征并构建特征集。最后,利用AVOA自适应优化XGBoost超参数以建立稳健的XGBoost模型,进而高效实现轴承故障分级诊断。试验结果表明,经过组稀疏学习重构的信号具备更强故障特征表示能力,相较于传统机器学习模型,采用AVOA-XGBoost模型进行分类能够取得更高准确率,所提方法能够有效诊断轴承故障类型及故障程度。
展开更多
关键词
轴承故障诊断
组稀疏学习
特征提取
非洲秃鹫优化算法
XGBoost
在线阅读
下载PDF
职称材料
题名
基于组稀疏学习与AVOA-XGBoost的轴承故障分级诊断
被引量:
2
1
作者
张吉祥
张孟健
王德光
杨明
机构
贵州大学电气工程学院
华南理工大学计算机科学与工程学院
出处
《振动与冲击》
EI
CSCD
北大核心
2024年第18期96-105,共10页
基金
国家自然科学基金项目(62341303,52265066,62203132)
贵州省省级科技计划资助项目(黔科合基础-ZK[2022]一般103)
+1 种基金
贵州大学科研基金资助项目(贵大特岗合字[2021]04号)
贵州省教育厅创新群体(黔科合支撑[2021]012)。
文摘
针对工业设备中轴承振动信号在噪声环境下故障分级诊断准确率低的问题,提出一种基于组稀疏学习与非洲秃鹫优化算法优化极端梯度提升树(African vultures optimization algorithm-extreme gradient boosting,AVOA-XGBoost)的轴承故障分级诊断方法。首先,利用组稀疏学习对轴承振动信号进行重构,以降低噪声水平并更有效地表征故障脉冲。然后,对重构后的信号提取时域、频域和熵值特征并构建特征集。最后,利用AVOA自适应优化XGBoost超参数以建立稳健的XGBoost模型,进而高效实现轴承故障分级诊断。试验结果表明,经过组稀疏学习重构的信号具备更强故障特征表示能力,相较于传统机器学习模型,采用AVOA-XGBoost模型进行分类能够取得更高准确率,所提方法能够有效诊断轴承故障类型及故障程度。
关键词
轴承故障诊断
组稀疏学习
特征提取
非洲秃鹫优化算法
XGBoost
Keywords
bearing fault diagnosis
group-sparsity learning
feature extraction
African vulture optimization algorithm
XGBoost
分类号
TH17 [机械工程—机械制造及自动化]
TP206.3 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于组稀疏学习与AVOA-XGBoost的轴承故障分级诊断
张吉祥
张孟健
王德光
杨明
《振动与冲击》
EI
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部