期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于混合高斯模型的配电网负荷伪量测权重优化算法 被引量:6
1
作者 申定辉 于晓蕾 吴丹 《广东电力》 2016年第5期86-91,123,共7页
提出一种基于高斯混合模型(Gaussian mixture model,GMM)的配电网负荷量测权重优化算法,包括对GMM参数的优化和权重确定。首先采用引力搜索算法(gravitational search algorithm,GSA)对数据的最佳聚类个数进行判断,利用K-means算法获取... 提出一种基于高斯混合模型(Gaussian mixture model,GMM)的配电网负荷量测权重优化算法,包括对GMM参数的优化和权重确定。首先采用引力搜索算法(gravitational search algorithm,GSA)对数据的最佳聚类个数进行判断,利用K-means算法获取数据的初始聚类中心、方差和混合权重;然后通过组合马尔科夫链蒙特卡洛期望最大化(Markov chain Monte Carlo-expectation maximum,MCMC-EM)算法对GMM的参数进行估计;最后根据优化的GMM,提出负荷伪量测权重优化方法,确定负荷伪量测的权重。以改进IEEE-12节点系统对所提方法进行验证,结果表明其合理、有效。 展开更多
关键词 配电网 状态估计 伪量测权重 高斯混合模型 组合马尔科夫链蒙特卡洛期望最大化算法
在线阅读 下载PDF
基于SMC-PHDF的部分可分辨的群目标跟踪算法 被引量:27
2
作者 连峰 韩崇昭 +1 位作者 刘伟峰 元向辉 《自动化学报》 EI CSCD 北大核心 2010年第5期731-741,共11页
提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了... 提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法. 展开更多
关键词 群目标跟踪 粒子概率假设密度滤波器 高斯混合模型 期望最大化算法 马尔科夫蒙特卡洛算法
在线阅读 下载PDF
样本缺失情况下的雷达目标自适应检测
3
作者 邹鲲 来磊 +1 位作者 骆艳卜 李伟 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第6期73-78,共6页
雷达信号自适应检测问题中,参考数据中部分样本丢失会导致常规检测器性能显著下降。在无先验信息条件下,采用期望最大算法获得杂波协方差矩阵的最大似然估计,得到基于期望最大算法的自适应匹配滤波器。利用探测环境的先验信息,在贝叶斯... 雷达信号自适应检测问题中,参考数据中部分样本丢失会导致常规检测器性能显著下降。在无先验信息条件下,采用期望最大算法获得杂波协方差矩阵的最大似然估计,得到基于期望最大算法的自适应匹配滤波器。利用探测环境的先验信息,在贝叶斯框架下,采用Gibbs抽样获得杂波协方差矩阵的后验均值估计,得到基于马尔科夫链蒙特卡洛自适应匹配滤波器。计算机仿真分析表明,这2种检测器可以在样本缺失情况下具有较好的检测性能。当杂波协方差矩阵先验信息较少时,EM-AMF与MCMC-AMF检测性能相当;当有先验信息可供利用时,MCMC-AMF的检测性能可以得到进一步提升。 展开更多
关键词 自适应检测 数据缺失 期望最大算法 马尔科夫蒙特卡洛方法 GIBBS抽样
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部