在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-W...在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。展开更多
针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型...针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。展开更多
文摘在信息化蓬勃发展的今日,大量云计算资源的高效管理是运维领域的重要难题。准确的负载预测是应对这一难题的关键技术。针对该问题提出一种基于局部加权回归周期趋势分解算法(Seasonal and Trend decomposition using Loess,STL)、Holt-Winters模型和深度自回归模型(DeepAR)的组合预测模型STL-DeepAR-HW。先采用快速傅里叶变换和自相关函数提取数据的周期性特征,以提取到的最优周期对数据做STL分解,将数据分解为趋势项、季节项和余项;并用DeepAR和Holt-Winters分别预测趋势项和季节项,最后组合得到预测结果。在公开数据集AzurePublicDataset上进行实验,结果表明,与Transformer、Stacked-LSTM以及Prophet等模型相比,该组合模型在负载预测中具有更高的准确性和适用性。
文摘针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。