通过多目标智能优化算法研究微震震源定位存在的模型组合合理性未阐明、易陷入局部最优解、定位结果波动性较大等问题。为解决这些问题,首先在到时差模型与到时差商模型基础上设计4个不同的微震震源定位数学模型,两两组合构建6个多目标...通过多目标智能优化算法研究微震震源定位存在的模型组合合理性未阐明、易陷入局部最优解、定位结果波动性较大等问题。为解决这些问题,首先在到时差模型与到时差商模型基础上设计4个不同的微震震源定位数学模型,两两组合构建6个多目标优化定位模型;再设计3组基于不同台网形状(三维多面体、二维长方形、一维直线型)的微震震源正演仿真实验和1组工程数据验证实验,并引入多目标蚁狮优化(multi-objective ant lion optimization,MOALO)算法求解这些模型;最后采用多个统计指标评判各个模型组合定位效果的优劣。结果表明,数学模型组合(TDA-P1,TDQA)结合MOALO算法的多目标优化定位策略能够得到较高的微震震源定位精度,且模型稳健性较好,优于其他模型组合和传统多目标定位方法,在微震监测领域具有一定的应用价值。展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
文摘通过多目标智能优化算法研究微震震源定位存在的模型组合合理性未阐明、易陷入局部最优解、定位结果波动性较大等问题。为解决这些问题,首先在到时差模型与到时差商模型基础上设计4个不同的微震震源定位数学模型,两两组合构建6个多目标优化定位模型;再设计3组基于不同台网形状(三维多面体、二维长方形、一维直线型)的微震震源正演仿真实验和1组工程数据验证实验,并引入多目标蚁狮优化(multi-objective ant lion optimization,MOALO)算法求解这些模型;最后采用多个统计指标评判各个模型组合定位效果的优劣。结果表明,数学模型组合(TDA-P1,TDQA)结合MOALO算法的多目标优化定位策略能够得到较高的微震震源定位精度,且模型稳健性较好,优于其他模型组合和传统多目标定位方法,在微震监测领域具有一定的应用价值。
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.