The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloy...The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.展开更多
The evolution of microstructure on aging of an (α+β) titanium alloy (Ti-5A1-5Mo-5V-1Cr-1Fe) in the β and (α+β) solution-treated and quenched conditions was investigated, The presence of very fine to phase...The evolution of microstructure on aging of an (α+β) titanium alloy (Ti-5A1-5Mo-5V-1Cr-1Fe) in the β and (α+β) solution-treated and quenched conditions was investigated, The presence of very fine to phase was detected by electron diffraction for samples aged below 400 ℃. The fine a aggregates are uniformly formed within fl grains by nucleating at the to particles or β/ω interfaces. At higher temperature, the formation of to phase is avoided and the a lamellae are precipitated at the preferred site of grain boundary and then within the matrix. The highest hardness values are found when the alloys are aged at 450 ℃ for fl condition and 350 ℃ for (α+β) condition.展开更多
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Project of China
文摘The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.
基金Project (50634030) supported by the National Natural Science Foundation of ChinaProject (2007DS04014) supported by the Program of Science and Technology of Shandong Province,ChinaProject supported by the Open Research Fund from the State Key Laboratory of Rolling and Automation,Northeastern University, China
文摘The evolution of microstructure on aging of an (α+β) titanium alloy (Ti-5A1-5Mo-5V-1Cr-1Fe) in the β and (α+β) solution-treated and quenched conditions was investigated, The presence of very fine to phase was detected by electron diffraction for samples aged below 400 ℃. The fine a aggregates are uniformly formed within fl grains by nucleating at the to particles or β/ω interfaces. At higher temperature, the formation of to phase is avoided and the a lamellae are precipitated at the preferred site of grain boundary and then within the matrix. The highest hardness values are found when the alloys are aged at 450 ℃ for fl condition and 350 ℃ for (α+β) condition.