期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
全波形激光雷达数据在点云分类中的应用研究 被引量:6
1
作者 王金虎 李传荣 周梅 《遥感信息》 CSCD 2013年第5期21-27,共7页
全波形激光雷达(Full-Waveform LiDAR)对发射脉冲和后向散射脉冲都进行小间隔采样,几乎能记录整个波形。利用小光斑全波形激光雷达数据,基于激光雷达的能量方程并结合平面目标和立体目标与激光脉冲的作用机理,研究了以广义高斯函数为核... 全波形激光雷达(Full-Waveform LiDAR)对发射脉冲和后向散射脉冲都进行小间隔采样,几乎能记录整个波形。利用小光斑全波形激光雷达数据,基于激光雷达的能量方程并结合平面目标和立体目标与激光脉冲的作用机理,研究了以广义高斯函数为核函数的组分建模和波形分解方法,提出了一套对不同目标的后向散射回波波形进行波形去噪平滑、组分建模、波形分解和组分特征提取,并结合波形分解提取的组分距离、振幅、回波宽度和后向散射截面4个组分特征应用于实测点云数据分类的流程。实验结果验证了本文方法的可行性和有效性,为后续的点云目标识别提取以及目标量测提供支持。 展开更多
关键词 全波形激光雷达 波形分解 组分建模 组分特征提取 点云分类
在线阅读 下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
2
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部