期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于主元分析和线性判别分析降维的稀疏表示分类 被引量:3
1
作者 那天 宋晓宁 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期286-291,共6页
为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构... 为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构PCA系数进行决策分类。EPCA+线性判别分析(EPCA+LDA)算法在EPCA算法的基础上增加LDA约束模型,提高重构样本的稀疏表示的鉴别性。将该文算法应用于AR和FERET人脸数据库,与扩展SRC(ESRC)、SRC、SRC_PCA、协同表达分类(CRC)算法相比,该文算法有较高的识别率和较低的时间复杂度。将EPCA算法和EPCA+LDA算法应用于FETET数据集,识别率分别为61.46%和59.17%,运行时间分别为383.02 s和220.62 s。 展开更多
关键词 主元分析 线性判别分析 降维 稀疏表示分类 人脸识别 协同表达分类
在线阅读 下载PDF
基于稀疏近邻表示的分类方法 被引量:4
2
作者 王琦 惠康华 《计算机工程与设计》 CSCD 北大核心 2013年第4期1425-1431,共7页
稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNR... 稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNRC适用于呈非线性分布的数据集,并取得了较好的效果。进一步的分析表明,SNRC能够较好的适用于那些通过降维方法得到的低维数据的分类问题,尤其适用于基于近邻保持的一类降维方法得到的低维数据,并且具有较低的时间复杂度。 展开更多
关键词 稀疏表示 局部线性嵌入 稀疏近邻表示 K近邻分类 降维
在线阅读 下载PDF
基于正则化边界Fisher分析和稀疏表示分类的人脸识别方法 被引量:2
3
作者 黄可坤 《计算机应用》 CSCD 北大核心 2013年第6期1723-1726,共4页
边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较... 边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较小的数乘上单位阵构造正则项,然后加到MFA的类内散度矩阵中,使得所得矩阵是可逆的,并且不会丢失对分类有益的分量,也容易确定其中的参数。因为一个样本通常能被少数几个距离比较近的同类样本很好地线性表达,在正则化MFA降维之后结合使用稀疏表示分类算法进一步提高识别率。在FERET和AR数据库上的实验表明,对比一些经典的降维方法,使用该方法能显著提高识别率。 展开更多
关键词 人脸识别 降维 FISHER线性判别分析 边界Fisher分析 稀疏表示分类
在线阅读 下载PDF
滑动窗近似线性依赖稀疏的核递推最小二乘算法
4
作者 陈绪君 朱宇芳 +1 位作者 胡君红 马得宇 《计算机工程》 CAS CSCD 北大核心 2016年第8期64-68,共5页
针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-K... 针对测试训练期间变化的信道环境,提出一种新的滑动窗近似线性依赖稀疏的核递推最小二乘算法。该算法核矩阵的尺寸只与滑动窗口宽度有关。选择字典表中最近的L个数据测试近似线性依赖准则,减少系统开销并降低系统实现的复杂度,克服ALD-KRLS算法核矩阵随字典表线性增长的缺陷。当训练序列的自相关矩阵特征根谱大于40时,较SW-KRLS均方误差性能有近3 d B的改善,且具有更小的稳态失调特性。仿真结果表明,与ALD-KRLS算法和KRLS算法相比,该算法具有更快的收敛速度和较好的均方误差性能。 展开更多
关键词 核递推最小二乘算法 稀疏表示 近似线性依赖 滑动窗 核矩阵 高斯核函数
在线阅读 下载PDF
自适应多阶段线性重构表示分类的人脸识别 被引量:1
5
作者 钱剑滨 陈秀宏 《智能系统学报》 CSCD 北大核心 2020年第5期964-971,共8页
针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法。在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取... 针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法。在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取相似类,并保留相似类中的全部样本作为下一阶段的训练样本。该策略最终产生具有高分类置信度的稀疏类概率分布,根据类系数的大小自适应选择相似的类,提高了分类计算的效率。实验结果表明,该方法分类性能优于其他RBC方法,特别是在类别数较多的数据集上性能提升明显,并且CPU时间保持相对较低水平。 展开更多
关键词 人脸识别 自适应 多阶段 线性重构 表示系数 分类方法 稀疏表示 协同表示 模式识别
在线阅读 下载PDF
结合Fisher判别分析和稀疏编码的图像场景分类 被引量:9
6
作者 张瑞杰 魏福山 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期808-814,共7页
视觉词典法是当前广泛使用的一种图像表示方法,针对传统视觉词典法存在的表示误差大、空间信息丢失以及判别性弱等问题,提出一种基于Fisher判别稀疏编码的图像场景分类算法.首先利用近邻视觉词汇重构局部特征点,构建局部特征点的非负稀... 视觉词典法是当前广泛使用的一种图像表示方法,针对传统视觉词典法存在的表示误差大、空间信息丢失以及判别性弱等问题,提出一种基于Fisher判别稀疏编码的图像场景分类算法.首先利用近邻视觉词汇重构局部特征点,构建局部特征点的非负稀疏局部线性编码,从而有效地利用图像的空间信息;然后在非负稀疏局部线性编码的基础上引入Fisher判别约束准则,构建基于Fisher判别约束的非负稀疏局部线性编码模型,以获得图像的判别稀疏向量表示,增强图像稀疏表示的判别性;最后结合支持向量机(SVM)分类器实现场景分类.实验结果表明,该算法提高了图像稀疏表示的特征分类能力以及分类性能,更有利于场景分类任务. 展开更多
关键词 场景分类 图像表示 非负稀疏局部线性编码 Fisher判别约束准则
在线阅读 下载PDF
近邻类加权结构稀疏表示图像识别算法 被引量:1
7
作者 胡正平 赵淑欢 +1 位作者 彭燕 王宁 《信号处理》 CSCD 北大核心 2014年第8期891-900,共10页
针对如何将近邻、子空间学习与稀疏表示结合起来解决基于稀疏表示的图像识别问题,本文综合考虑子空间中样本的类内散度小,类间散度大,且同类中所有样本对重构某一给定样本的影响相似(即表示系数相似),因此按类而非样本处理的思想更符合... 针对如何将近邻、子空间学习与稀疏表示结合起来解决基于稀疏表示的图像识别问题,本文综合考虑子空间中样本的类内散度小,类间散度大,且同类中所有样本对重构某一给定样本的影响相似(即表示系数相似),因此按类而非样本处理的思想更符合基于类重构误差进行分类的算法要求,为此提出一种基于近邻类加权结构稀疏表示算法用于图像识别。该算法首先利用线性类重构误差选取k个最近邻类,并将其对应的系数作为权值对投影后的近邻类加权,其次在投影子空间上,用k个类的加权训练样本集对测试样本进行结构稀疏表示,最后根据最小类重构误差得出分类结果。在AR,Yale B,MNIST,PIE数据库上的实验结果表明该方法在训练样本数较少的情况下获得较高的识别率且具有一定的鲁棒性。 展开更多
关键词 稀疏分类 加权近邻类 线性表示 PCA 结构稀疏
在线阅读 下载PDF
结合多决策准则稀疏表示的SAR图像目标识别方法 被引量:3
8
作者 李亚娟 《红外与激光工程》 EI CSCD 北大核心 2021年第8期346-353,共8页
提出组合多决策准则的稀疏表示分类(Sparse Representation-based Classification,SRC)并在合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别中进行应用。传统SRC通常在全局字典上对测试样本进行重构,分别计算不同训练类别对于测试... 提出组合多决策准则的稀疏表示分类(Sparse Representation-based Classification,SRC)并在合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别中进行应用。传统SRC通常在全局字典上对测试样本进行重构,分别计算不同训练类别对于测试样本的重构误差,最终根据最小重构误差的原则进行分类决策。然而,由于SAR目标识别问题的复杂性,单一决策准则往往对扩展操作条件的适应性不强,导致整体性能下降。为此,文中基于稀疏表示求解的系数矢量,分别采用最小重构误差原则、最大系数能量原则以及局部最小重构误差原则分别进行分类。最小重构误差准则直接采用传统算法。最大系数能量准则分别计算不同训练类别系数能量,按照能量最大的原则进行判决。局部最小重构误差原则在局部字典上对测试样本进行表征和分析,充分体现SAR图像的视角敏感性。对于三个准则获取的决策变量,通过适当转换统一采用概率分布形式进行表达。最终,基于线性加权融合对三个准则的结果进行分析,判决测试样本所属目标类别。基于MSTAR数据集对方法进行测试,分别验证了提出方法在标准操作条件、俯仰角差异、噪声干扰及目标遮挡等情形的性能。实验结果表明:所提方法通过结合多决策准则能够有效提升SAR目标识别性能。 展开更多
关键词 合成孔径雷达 目标识别 稀疏表示分类 多决策准则 线性加权融合
在线阅读 下载PDF
基于加权局部线性KNN的文本分类算法 被引量:6
9
作者 齐斌 邹红霞 王宇 《计算机应用研究》 CSCD 北大核心 2020年第8期2381-2385,2408,共6页
针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计... 针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计和算法的收敛性证明;最后,通过实验对比得出模型中各参数的优势值域。实验结果表明,改进后的算法与基础模型相比,查准率和查全率平均分别提升了2.49%和0.85%,相比于其他主流分类算法在性能上也均有明显提高。通过分析,该算法在文本分类上具有准确率高、收敛性强等优势,适用于对高维数据的文本分类。 展开更多
关键词 稀疏表示 加权 局部线性K最近邻 文本分类
在线阅读 下载PDF
基于类邻域字典的线性回归文本分类 被引量:4
10
作者 武娇 洪彩凤 +2 位作者 顾永春 顾兴全 金世举 《计算机工程》 CAS CSCD 北大核心 2021年第8期93-99,108,共8页
文本表示的高维性会增加文本分类时的计算复杂度。针对该问题,构建基于类邻域字典的线性回归分类模型。采用K近邻方法构造各类别的类邻域字典,根据对测试样本的不同表示,分别提出基于级联类邻域字典和基于类邻域字典的线性回归分类算法... 文本表示的高维性会增加文本分类时的计算复杂度。针对该问题,构建基于类邻域字典的线性回归分类模型。采用K近邻方法构造各类别的类邻域字典,根据对测试样本的不同表示,分别提出基于级联类邻域字典和基于类邻域字典的线性回归分类算法。此外,为缓解噪声数据对分类性能的影响,通过度量测试样本与各个类别之间的相关度裁剪噪声类数据。实验结果表明,该模型对长文本和短文本均能够得到较高的分类精度和计算效率,同时,噪声类裁剪策略使其对包含较多类别数的文本语料也具有较好的分类性能。 展开更多
关键词 稀疏表示分类 K近邻 字典学习 线性回归分类 文本分类
在线阅读 下载PDF
基于核字典学习的图像分类 被引量:1
11
作者 徐俊 李元祥 +1 位作者 Wei Xian 骆建华 《计算机应用研究》 CSCD 北大核心 2017年第12期3820-3824,共5页
航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。... 航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。首先学习核字典并通过核字典获取目标样本的稀疏表示,挖掘数据的内部结构;其次采用线性鉴别分析,加强稀疏表示的可分性;最后利用支持向量机对目标进行分类。实验结果表明,与传统基于子空间特征提取的算法和基于字典学习的算法相比,基于核字典学习与鉴别分析的算法分类性能优越。 展开更多
关键词 目标分类 稀疏表示 核字典学习 线性鉴别分析 支持向量机
在线阅读 下载PDF
基于Fisher判别字典学习的可拒识模式分类模型 被引量:1
12
作者 廖重阳 张洋 +1 位作者 屈光中 毕云云 《计算机工程》 CAS CSCD 北大核心 2016年第4期202-208,共7页
针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训... 针对模式分类任务中测试样本存在未知类别输入的问题,在稀疏表示分类技术的基础上提出一种可拒识模式分类模型。该模型在字典学习的目标函数中加入Fisher判别约束,使样本在该字典下分解的系数具有较大的类间散度和较小的类内散度,将训练样本在已学习字典下进行分解,并把分解后的系数构建多个局部线性块,为已构建的线性块建立超球覆盖模型,用于描述训练类样本系数的分布状况。对于测试样本,根据在已学字典下的分解系数是否在训练样本系数的覆盖模型范围内,做出拒识或接受分类处理的判决。在MINST手写体数据库上的实验结果表明,该模型在保持较高正确识别率的同时,能对非训练类样本进行有效的拒识处理。 展开更多
关键词 可拒识 字典学习 FISHER判别分析 基于稀疏表示分类 流形 最大线性
在线阅读 下载PDF
基于最大熵准则的多视角SAR目标分类方法 被引量:2
13
作者 李宁 王军敏 +1 位作者 司文杰 耿则勋 《红外与激光工程》 EI CSCD 北大核心 2021年第12期574-580,共7页
针对合成孔径雷达(Synthetic aperture radar,SAR)目标分类问题,提出基于最大熵准则的多视角方法。采用经典的图像相似度测度构建不同视角SAR图像之间的相关性矩阵,在此基础上分别计算不同视角组合条件下的非线性相关信息熵值。非线性... 针对合成孔径雷达(Synthetic aperture radar,SAR)目标分类问题,提出基于最大熵准则的多视角方法。采用经典的图像相似度测度构建不同视角SAR图像之间的相关性矩阵,在此基础上分别计算不同视角组合条件下的非线性相关信息熵值。非线性相关信息熵值可分析多个变量之间的统计特性,熵值的大小即可反映不同变量之间的内在关联。根据最大熵的原则选择最优的视角子集,其中SAR图像具有最大的内在相关性。分类过程以联合稀疏表示为基础,对具有最大熵值的多个视角进行联合表示。联合稀疏表示模型同时处理若干稀疏表示问题,在它们具有关联的条件下具有提升重构精度的优势。根据不同视角求解得到的表示系数,按照类别分别计算对于选取多视角的重构误差,并根据误差最小的准则进行最终决策。文中方法可有效对多视角SAR图像样本进行相关性分析,并利用联合稀疏表示利用这种相关性,能够更好提高分类精度。采用MSTAR数据集对方法进行分析测试,通过与几类其他方法在多种测试条件下进行对比,结果显示了最大熵准则在多视角选取中的有效性和文中方法对SAR目标分类性能的优越性。 展开更多
关键词 合成孔径雷达 目标分类 多视角 线性相关信息熵 联合稀疏表示
在线阅读 下载PDF
LASRC-ODP降维算法在行为识别中的应用
14
作者 简献忠 贺士霖 《计算机应用研究》 CSCD 北大核心 2018年第11期3517-3520,共4页
针对分类识别算法在行为识别中存在识别率低和实时性差的问题,提出了一种线性近似稀疏表示分类的正交鉴别投影(LASRC-ODP)算法用于行为识别。LASRC-ODP算法将高维数据投影到低维空间时,最小化类内残差和最大化类间残差,同时利用投影矩... 针对分类识别算法在行为识别中存在识别率低和实时性差的问题,提出了一种线性近似稀疏表示分类的正交鉴别投影(LASRC-ODP)算法用于行为识别。LASRC-ODP算法将高维数据投影到低维空间时,最小化类内残差和最大化类间残差,同时利用投影矩阵的正交约束来增强鉴别结果;与LASRC分类相结合,将训练样本构成过完备字典,利用L_2范数求解稀疏系数,优化了求解复杂度、加快了计算速度,得到特征更易区分的样本、最后根据L_1范数和残差找出对应类别,保证了强鲁棒性。采用KTH行为数据库进行实验,可使LASRC分类时识别率为97. 1%,实验结果表明该算法识别率高、抗噪和鲁棒性强,为行为识别的研究提供了一种新思路。 展开更多
关键词 正交鉴别投影 线性近似稀疏表示分类 行为识别
在线阅读 下载PDF
基于镜像图的LRC和CRC偏差结合的人脸识别 被引量:2
15
作者 陈铭 周先春 周杰 《南京信息工程大学学报(自然科学版)》 CAS 2019年第3期340-345,共6页
为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法... 为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法增加了训练样本的数目,克服了由于光照和姿态等外部因素带来的影响.实验结果表明,镜像图与LRC和CRC偏差结合的人脸识别方法提高了人脸识别的准确性. 展开更多
关键词 人脸识别 镜像 协作表示分类算法 线性回归分类算法 偏差 稀疏表示
在线阅读 下载PDF
一种监督降维的OP-LASRC算法在行为识别中的应用 被引量:2
16
作者 简献忠 周小朋 《计算机应用研究》 CSCD 北大核心 2017年第11期3477-3481,3485,共6页
针对大数据的人体行为识别时实时性差和识别率低的问题,提出了优化投影对线性近似稀疏表示分类(OP-LASRC)的监督降维算法,与线性近似稀疏表示(LASRC)快速分类算法结合用于大数据的行为识别。利用LASRC的残差计算规律设计OP-LASRC实现监... 针对大数据的人体行为识别时实时性差和识别率低的问题,提出了优化投影对线性近似稀疏表示分类(OP-LASRC)的监督降维算法,与线性近似稀疏表示(LASRC)快速分类算法结合用于大数据的行为识别。利用LASRC的残差计算规律设计OP-LASRC实现监督降维:在追求一个线性投影时减小训练样本的本类重构残差及增大类间重构残差,保留样本的类别特征。对降维后的行为数据用LASRC算法分类:用L2范数估算稀疏系数,取前k个最大的稀疏系数对应的训练样本,用L1范数和残差计算得到识别结果。在KTH行为数据库上的实验表明,OP-LASRC降维后,LASRC在分类时识别率高达96.5%,执行时间比同类算法短,抗噪声能力强,证明了OP-LASRC的高效和强鲁棒性,能完美匹配LASRC用于大数据的行为识别。 展开更多
关键词 稀疏表示 监督降维 优化投影 线性近似 行为识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部