期刊文献+
共找到2,544篇文章
< 1 2 128 >
每页显示 20 50 100
集成先验知识的多核线性规划支持向量回归 被引量:13
1
作者 周金柱 黄进 《自动化学报》 EI CSCD 北大核心 2011年第3期360-370,共11页
为了解决工程中数据样本较少情况下的准确建模问题,提出了一种集成先验知识的多核线性规划支持向量回归算法.该算法首先通过修改优化目标和不等式约束条件,把来自仿真模型具有偏差的先验知识数据集成到现有的线性规划支持向量回归的学... 为了解决工程中数据样本较少情况下的准确建模问题,提出了一种集成先验知识的多核线性规划支持向量回归算法.该算法首先通过修改优化目标和不等式约束条件,把来自仿真模型具有偏差的先验知识数据集成到现有的线性规划支持向量回归的学习框架中.然后,引入多核到集成先验知识的线性规划支持向量回归中以实现复杂规律的准确建模.最后,将算法推广到多输入多输出的数据建模中.仿真案例以及在天线和滤波器的实际应用表明:该算法求解简单,具有较好的模型稀疏和准确性. 展开更多
关键词 线性规划支持向量回归 先验知识 多核 小样本 天线 滤波器
在线阅读 下载PDF
基于线性规划支持向量回归的混沌系统预测 被引量:2
2
作者 孙德山 吴今培 肖健华 《计算机工程与应用》 CSCD 北大核心 2005年第19期35-37,共3页
支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已经广泛用于解决分类与回归问题。标准的支持向量机算法需要解一个二次规划问题,当训练样本较多时,其运算速度一般很慢。为了提高运算速度,介绍了一种基于线性规划的支持... 支持向量机是一种基于统计学习理论的新颖的机器学习方法,该方法已经广泛用于解决分类与回归问题。标准的支持向量机算法需要解一个二次规划问题,当训练样本较多时,其运算速度一般很慢。为了提高运算速度,介绍了一种基于线性规划的支持向量回归算法,并由此提出几种新的回归模型,同时将它们应用到混沌时间序列预测中,并比较了它们的预测性能。在实际应用中,可以根据具体情况灵活地选择所需模型。 展开更多
关键词 支持向量 回归 线性规划 核函数
在线阅读 下载PDF
基于一类分类的线性规划支持向量回归算法 被引量:1
3
作者 孙德山 赵君 +2 位作者 高釆葵 郑平 刘小菲 《计算机科学》 CSCD 北大核心 2014年第4期230-232,243,共4页
根据一类分类思想,提出一种基于线性规划的支持向量回归算法,该算法揭示了一类分类和回归之间的关系。实验在一个正弦函数、一个混沌时间序列和一个实际的数据上进行。实验结果表明,所给算法的泛化性能优于标准的支持向量回归算法(ε-S... 根据一类分类思想,提出一种基于线性规划的支持向量回归算法,该算法揭示了一类分类和回归之间的关系。实验在一个正弦函数、一个混沌时间序列和一个实际的数据上进行。实验结果表明,所给算法的泛化性能优于标准的支持向量回归算法(ε-SVR)、线性规划支持向量回归算法(LP-SVR)和最小二乘支持向量回归算法(LS-SVR),实验结果也说明了所给算法的有效性和可行性。 展开更多
关键词 一类分类 支持向量 回归算法 核函数
在线阅读 下载PDF
确定经验风险水平的线性规划支持向量回归算法
4
作者 孙德山 马冬玲 +1 位作者 柳莎莎 盛超 《计算机应用与软件》 CSCD 北大核心 2013年第6期16-18,共3页
传统的线性规划支持向量回归算法需要选择一个折中参数C来确定经验风险和置信风险之间的比例,而针对不同的数据选择最优的参数C一般并不容易。为解决这一问题,提出一种给定经验风险水平的线性规划支持向量回归算法,该算法能够事先确定... 传统的线性规划支持向量回归算法需要选择一个折中参数C来确定经验风险和置信风险之间的比例,而针对不同的数据选择最优的参数C一般并不容易。为解决这一问题,提出一种给定经验风险水平的线性规划支持向量回归算法,该算法能够事先确定经验风险水平的大小。另外,新算法还可以通过设置不同样本点上经验风险的大小,处理样本中存在异方差的情况。仿真试验验证了所给算法的可行性和有效性。 展开更多
关键词 线性规划 支持向量回归 经验风险 结构风险 置信风险
在线阅读 下载PDF
基于支持向量回归的三体船非线性横摇运动辨识 被引量:1
5
作者 顾跃 朱仁传 +1 位作者 李传庆 吴铖毓 《中国舰船研究》 北大核心 2025年第2期187-195,共9页
[目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船... [目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船体的附加质量与阻尼系数。[结果]结果表明,三体船阻尼系数呈现出较强的频率相关性;低频时阻尼非线性特征明显,舭龙骨阻尼成分占比较大。[结论]所提方法能够准确捕捉三体船横摇运动的非线性特征,相比于势流理论能够更好地考虑片体间流场的相互作用。 展开更多
关键词 三体船 线性横摇阻尼 计算流体力学 支持向量回归 回归分析
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
6
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于支持向量回归的露点间接蒸发冷却模型应用研究 被引量:1
7
作者 许家翔 陈瑞 曹军 《化学工程》 北大核心 2025年第3期77-82,共6页
露点间接蒸发冷却在制冷循环系统运行中受环境因素影响较大,冷却性能不稳定,为保证制冷系统冷负荷满足设计要求,同时降低系统运行能耗。文中利用数值模拟和SVR(支持向量回归)模型,构建冷却器影响因素与冷却器出口温度的响应关系,样本数... 露点间接蒸发冷却在制冷循环系统运行中受环境因素影响较大,冷却性能不稳定,为保证制冷系统冷负荷满足设计要求,同时降低系统运行能耗。文中利用数值模拟和SVR(支持向量回归)模型,构建冷却器影响因素与冷却器出口温度的响应关系,样本数据通过实验和数值模型训练获得,同时通过MATLAB和TRNSYS联合仿真,构建蒸发冷却+机械补冷模式的机房制冷系统模式,分析回归预测模型对该系统运行能耗的影响。结果表明:SVR模型准确地构建了冷却器影响因素和出口温度的响应关系,R^(2)和E_(MSE)分别为0.9889、0.0671,平均绝对误差为0.1699℃。SVR模型能够更好地根据响应关系控制系统运行策略,以达到更为节能的运行效果。 展开更多
关键词 露点间接蒸发冷却 数值模拟 支持向量回归 联合仿真
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
8
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构机姿态 掘进比能 支持向量回归
在线阅读 下载PDF
基于支持向量回归的陵城区冬小麦关键物候期预测
9
作者 宫翱 张艳 柳平增 《中国农机化学报》 北大核心 2025年第6期106-112,共7页
为探究环境变化对冬小麦物候期的影响,构建冬小麦关键物候期预测模型。选取温度、光照时数、降雨量等环境因子进行研究,通过散点图阵、正态分布检验以及Pearson相关性分析,探究数据的特点。并选用多元线性回归建立模型,但受数据量较少... 为探究环境变化对冬小麦物候期的影响,构建冬小麦关键物候期预测模型。选取温度、光照时数、降雨量等环境因子进行研究,通过散点图阵、正态分布检验以及Pearson相关性分析,探究数据的特点。并选用多元线性回归建立模型,但受数据量较少以及自变量之间的多重共线性影响,导致部分系数参数估计结果未通过检验等问题。因此,使用方差膨胀因子检验数据的多重共线性,并选取5种模型进行对比预测。通过对比5种模型预测结果,选用主成分分析结合支持向量回归来构建物候期预测模型。结果显示,各个物候期预测模型验证结果均方根误差均小于1,决定系数均大于90%,预测结果良好。预测模型不仅探究环境因子对物候期的影响,还为农业生产优化、资源调配和风险管理、农业气候适宜性研究以及科学研究与决策支持提供参考。 展开更多
关键词 冬小麦 物候期预测 支持向量回归 主成分分析
在线阅读 下载PDF
基于支持向量回归(SVR)的马尾松木材脱脂率预测
10
作者 郭佳伦 钟浩珉 +1 位作者 赵俊博 陈瑶 《北京林业大学学报》 北大核心 2025年第3期151-161,共11页
【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高... 【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高温条件下对马尾松木材进行处理,分析不同条件对木材表面颜色参数和脱脂率的影响,探讨其相关性。利用3种不同的核函数(多项式核函数、Sigmoid核函数、径向基函数)构建基于SVR的脱脂率预测模型,并通过比较选择最优模型。【结果】经氨气-水蒸气热处理脱脂后,马尾松表面明度(L^(*))和黄蓝指数(b^(*))低于未处理木材,红绿指数(a^(*))则高于未处理木材。随着氨水质量分数和处理温度的增加,L^(*)、a^(*)和b^(*)呈逐渐降低趋势,总色差(ΔE^(*))逐渐增大,脱脂率随之提高。在180℃、较高氨水质量分数的处理条件下,ΔE^(*)达到最大值58.89,脱脂率达到最高值70.00%。颜色参数与脱脂率呈局部二次函数关系,相关系数最高为0.713。在以径向基函数为核函数的SVR模型中,预测含脂率和脱脂率的均方根误差分别为0.523和4.315,决定系数分别为0.847和0.823,该预测模型可应用于脱脂率检测的前期筛选。【结论】本研究成功构建了基于SVR的马尾松木材脱脂率预测模型。该模型在脱脂率检测的前期筛选中具有一定的应用价值,能够在一定程度上实现检测过程的快速、简便和无损化。本研究为马尾松木材脱脂率检测的效率提升和质量改进提供了一种新的方法。 展开更多
关键词 支持向量回归 机器学习 预测模型 脱脂 马尾松 颜色参数
在线阅读 下载PDF
基于贝叶斯优化支持向量回归的煤自燃温度预测模型
11
作者 杨海燕 胡新成 +1 位作者 蔡佳文 余照阳 《工矿自动化》 北大核心 2025年第7期36-43,51,共9页
针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标... 针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标气体数据进行收集与处理。利用Spearman相关性分析选择与煤温相关性较强的指标气体并分析指标气体生成量间的共线性;对选择的指标气体进行主成分分析,解决多重共线性问题的同时降低维数;采用5折交叉验证方法划分训练集和测试集,通过平均绝对误差(MAE)、均方根误差(RMSE)和判定系数(R^(2))指标,对BO-SVR模型的性能与SVR、粒子群优化SVR(PSO-SVR)和遗传算法优化SVR(GA-SVR)模型进行定量评价。结果表明,BO-SVR模型的MAE较其他3种模型分别降低了74.2%,36.7%和10.2%,RMSE分别降低了71.9%,33.3%和11.4%,R^(2)达0.9885,高于其他模型。选取山西煤炭进出口集团河曲旧县露天煤业有限公司的烟煤煤样开展平行试验,BO-SVR模型在新数据集上的MAE为4.9279℃,RMSE为6.4899℃,R^(2)达0.9853,与原数据集预测结果保持高度一致性。表明BO-SVR模型具有较好的泛化性、预测精度和鲁棒性,有助于提高预测煤自燃温度的准确性。 展开更多
关键词 煤自燃 贝叶斯优化 支持向量回归 指标气体 预测模型
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
12
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
13
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
基于支持向量回归的破损船舶横摇运动快速预报
14
作者 刘涵 苏焱 张国强 《上海交通大学学报》 北大核心 2025年第7期1041-1049,共9页
基于ANSYS-AQWA求解破损舰船DTMB5415在多个工况下的横摇运动响应,通过与文献结果对比验证数值模型的有效性,并基于数值结果构建破损船舶横摇运动响应数据库;采用支持向量回归算法对横摇运动数据库进行辨识建模,探究工况要素与横摇运动... 基于ANSYS-AQWA求解破损舰船DTMB5415在多个工况下的横摇运动响应,通过与文献结果对比验证数值模型的有效性,并基于数值结果构建破损船舶横摇运动响应数据库;采用支持向量回归算法对横摇运动数据库进行辨识建模,探究工况要素与横摇运动方程系数之间的关系,构建横摇运动响应快速预报模型并进行验证.该方法相较于传统计算流体力学模型,预报效率显著提高. 展开更多
关键词 快速预报 支持向量回归 破损船舶 横摇运动
在线阅读 下载PDF
嵌入数据结构信息的单类支持向量机及其线性规划算法 被引量:4
15
作者 冯爱民 刘学军 孙廷凯 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期10-17,共8页
针对现有基于超平面的单类分类器未同时考虑目标数据全局与局部信息的不足,通过在单类支持向量机One-C lass SVM(OCSVM)算法中加入类内散度以反应目标数据的全局信息,提出了结构化单类支持向量机Structured OCSVM(SOCSVM),不仅使之具有... 针对现有基于超平面的单类分类器未同时考虑目标数据全局与局部信息的不足,通过在单类支持向量机One-C lass SVM(OCSVM)算法中加入类内散度以反应目标数据的全局信息,提出了结构化单类支持向量机Structured OCSVM(SOCSVM),不仅使之具有全局与局部化学习的特点,同时也为诸多的SVM算法嵌入数据内在结构这类先验信息提供了统一框架。为进一步提高运算效率,在SOCSVM二次规划求解基础上,通过最小化目标数据均值到超平面的函数距离,提出了线性规划算法,同时也避免了SOCSVM必须以原点作为负类代表的不足。人工和真实数据集上的实验结果验证了嵌入目标数据结构信息的SOCSVM及其线性规划算法的有效性。 展开更多
关键词 单类分类器 支持向量 结构信息 二次规划 线性规划
在线阅读 下载PDF
基于线性规划的多类支持向量机算法 被引量:5
16
作者 孙德山 吴今培 《计算机科学》 CSCD 北大核心 2005年第10期160-163,共4页
多类支持向量机一般采用多个两类分类支持向量机来求解,这就需要解多个二次规划问题,从而导致算法的计算复杂性很高。根据一类分类思想,提出一种基于线性规划的多类分类算法及其分解形式,所给算法通过引入核函数能够独立地对每一类样本... 多类支持向量机一般采用多个两类分类支持向量机来求解,这就需要解多个二次规划问题,从而导致算法的计算复杂性很高。根据一类分类思想,提出一种基于线性规划的多类分类算法及其分解形式,所给算法通过引入核函数能够独立地对每一类样本形成一个紧致的优化区域,从而达到分类的目的。对人工三螺旋线数据和几组实际数据库的识别实验表明,所结算法在保持良好的分类精度前提下,能有效地降低程序的运行时间。 展开更多
关键词 线性规划 多类分类 一类分类 核函数 支持向量机算法 线性规划 分类思想 计算复杂性 规划问题 分解形式 分类算法 分类精度 运行时间
在线阅读 下载PDF
基于线性规划的支持向量聚类算法 被引量:2
17
作者 孙德山 李海清 《计算机工程与设计》 CSCD 北大核心 2010年第6期1305-1307,1312,共4页
为了克服k-均值聚类算法容易受到数据空间分布影响的缺点,将线性规划下的一类支持向量机算法与K-均值聚类方法相结合提出一种支持向量聚类算法,该算法的每次循环都采用线性规划下的一类支持向量机进行运算。该算法实现简单,与二次规划... 为了克服k-均值聚类算法容易受到数据空间分布影响的缺点,将线性规划下的一类支持向量机算法与K-均值聚类方法相结合提出一种支持向量聚类算法,该算法的每次循环都采用线性规划下的一类支持向量机进行运算。该算法实现简单,与二次规划下的支持向量机聚类算法相比,该算法能够大大减小计算的复杂性,而且能保持良好的聚类效果。与K-均值聚类算法、自组织映射聚类算法等进行仿真比较,人工数据和实际数据表明了该算法的有效性和可行性。 展开更多
关键词 K-均值聚类 支持向量 一类分类 线性规划 核方法
在线阅读 下载PDF
基于线性规划的ν-支持向量机分类器 被引量:2
18
作者 宋杰 唐焕文 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第2期303-307,共5页
Scho..lkopf等提出的基于二次规划的ν-支持向量机(ν-SVM)与标准SVM相比,其优势在于可以控制支持向量的数目和误差,但由于增加了模型的复杂性,限制了其应用.为此,构造了一种基于线性规划的ν-SVM分类器,模型简单,参数ν具有明确的意义... Scho..lkopf等提出的基于二次规划的ν-支持向量机(ν-SVM)与标准SVM相比,其优势在于可以控制支持向量的数目和误差,但由于增加了模型的复杂性,限制了其应用.为此,构造了一种基于线性规划的ν-SVM分类器,模型简单,参数ν具有明确的意义,同样可以控制支持向量的数目和误差,直接利用比较成熟的线性规划算法.数值实验表明,该方法ν-SVM的训练速度要比基于二次规划的ν-SVM快得多,而分类效果两者相当. 展开更多
关键词 支持向量机分类器 SVM分类器 线性规划算法 二次规划 数值实验 直接利用 训练速度 分类效果 复杂性 误差 控制 模型
在线阅读 下载PDF
基于支持向量回归的非线性轮廓异常点识别
19
作者 马铭 孙江 +2 位作者 魏秀峰 杨文伟 聂斌 《机械设计》 CSCD 北大核心 2024年第S02期132-136,共5页
在现代制造业中,非线性轮廓数据的监控已成为质量管理领域中统计过程控制的关键研究方向。然而,现有的非线性轮廓异常点识别方法在处理非正态分布数据时仍存在性能不足的问题,亟需有效的解决方案。因此,文中提出了一种基于支持向量回归... 在现代制造业中,非线性轮廓数据的监控已成为质量管理领域中统计过程控制的关键研究方向。然而,现有的非线性轮廓异常点识别方法在处理非正态分布数据时仍存在性能不足的问题,亟需有效的解决方案。因此,文中提出了一种基于支持向量回归的异常点识别方法,综合运用数据深度与聚类分析等技术,精准识别异常轮廓数据,为提取高质量受控数据提供更可靠的基础。与传统的χ^(2)控制图方法进行仿真对比,发现文中所提出方法在识别异常非线性轮廓数据方面表现更为优异,第一类和第二类错误率显著降低。最后,通过木板垂直密度轮廓的实例验证,证明了所提出方法在实际制造过程中优越的应用价值。 展开更多
关键词 线性轮廓 异常点识别 支持向量回归 数据深度 聚类分析
在线阅读 下载PDF
线性规划ν-支持向量机的牛顿法 被引量:1
20
作者 宋杰 《计算机工程与应用》 CSCD 北大核心 2011年第26期32-34,128,共4页
基于线性规划的ν-支持向量机(ν-LPSVM)是在基于二次规划的ν-支持向量机(ν-QPSVM)的基础上提出的。ν-LPSVM和ν-QPSVM模型中的参数ν都可以控制支持向量的数目和误差,但ν-LPSVM的模型更为简单,应用前景更广。讨论了这种新型支持向... 基于线性规划的ν-支持向量机(ν-LPSVM)是在基于二次规划的ν-支持向量机(ν-QPSVM)的基础上提出的。ν-LPSVM和ν-QPSVM模型中的参数ν都可以控制支持向量的数目和误差,但ν-LPSVM的模型更为简单,应用前景更广。讨论了这种新型支持向量机的线性规划问题的最小2-范数解,在此基础上给出了一个快速、有限步终止的牛顿算法。数值实验表明,ν-LPSVM的牛顿算法快速而且有效。 展开更多
关键词 支持向量 ν-支持向量 线性规划 牛顿算法
在线阅读 下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部