期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
关于一个线性算子群的问题 被引量:1
1
作者 张利勋 《电子科技大学学报》 EI CAS CSCD 北大核心 1997年第1期89-92,共4页
在一个线性算子群应用于二阶线性发展方程求解的思路基础上[1],归纳其中的生成算子为n阶矩阵形式,进一步提出了该生成算子的线性算子群,在巴拿赫空间中证明了这个线性算子群的基本特征,且是高阶线性发展方程求解理论的基础部分... 在一个线性算子群应用于二阶线性发展方程求解的思路基础上[1],归纳其中的生成算子为n阶矩阵形式,进一步提出了该生成算子的线性算子群,在巴拿赫空间中证明了这个线性算子群的基本特征,且是高阶线性发展方程求解理论的基础部分。当然。 展开更多
关键词 线性算子 线性算子群 线性发展方程
在线阅读 下载PDF
局部C线性算子群
2
作者 郎开禄 《应用数学》 CSCD 1999年第2期85-89,共5页
本文定义了一种局部C群,讨论了局部C群与局部C半群的关系及一些基本性质,并建立了局部C群的生成定理.
关键词 局部C 局部C半 线性算子群 生成定理
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
3
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部