期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于有效注意力和GAN结合的脑卒中EEG增强算法 被引量:1
1
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部