In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of fu...In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of full actuation property which limits its mobility and trajectory tracking capabilities.In this work,an overactuated quadcopter design and control,which allows independent tilting of the rotors around their arm axis,is presented.Quadcopter with this added tilting mechanism makes it possible to overcome the aforementioned mobility limitation by achieving full authority on torque and force vectoring.The tilting property increases the control inputs to 8(the 4 propeller rotation speed plus the 4 rotor tilting angles)which gives a full control on the quadcopter states.Extensive mathematical model for the tilt rotor quadcopter is derived based on the Newton-Euler method.Furthermore,the feedback linearization method is used to linearize the model and a mixed sensitivity H∞optimal controller is then designed and synthesized to achieve the required performance and stability.The controlled system is simulated to assure the validity of the proposed controller and the quadcopter design.The controller is tested for its effectiveness in rejecting disturbances,attenuating sensor noise,and coping with the model uncertainties.Moreover,a complicated trajectory is examined in which the tilt rotor quadcopter has been successfully followed.The test results show the supremacy of the overactuated quadcopter over the traditional one.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
文摘In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of full actuation property which limits its mobility and trajectory tracking capabilities.In this work,an overactuated quadcopter design and control,which allows independent tilting of the rotors around their arm axis,is presented.Quadcopter with this added tilting mechanism makes it possible to overcome the aforementioned mobility limitation by achieving full authority on torque and force vectoring.The tilting property increases the control inputs to 8(the 4 propeller rotation speed plus the 4 rotor tilting angles)which gives a full control on the quadcopter states.Extensive mathematical model for the tilt rotor quadcopter is derived based on the Newton-Euler method.Furthermore,the feedback linearization method is used to linearize the model and a mixed sensitivity H∞optimal controller is then designed and synthesized to achieve the required performance and stability.The controlled system is simulated to assure the validity of the proposed controller and the quadcopter design.The controller is tested for its effectiveness in rejecting disturbances,attenuating sensor noise,and coping with the model uncertainties.Moreover,a complicated trajectory is examined in which the tilt rotor quadcopter has been successfully followed.The test results show the supremacy of the overactuated quadcopter over the traditional one.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.