期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
一种改进的线性判别分析算法MLDA 被引量:3
1
作者 刘忠宝 王士同 《计算机科学》 CSCD 北大核心 2010年第11期239-242,共4页
线性判别分析(LDA)是模式识别方法之一,已广泛应用于模式识别、数据分析等诸多领域。线性判别分析法寻找的是有效分类的方向。而当样本维数远大于样本个数(即小样本问题)时,LDA便束手无策。为有效解决线性判别分析法的小样本问题,提出... 线性判别分析(LDA)是模式识别方法之一,已广泛应用于模式识别、数据分析等诸多领域。线性判别分析法寻找的是有效分类的方向。而当样本维数远大于样本个数(即小样本问题)时,LDA便束手无策。为有效解决线性判别分析法的小样本问题,提出了一种改进的LDA算法——MLDA。该算法将类内离散度矩阵进行标量化处理,有效地避免了对类内离散度矩阵求逆。通过实验证明MLDA在一定程度上解决了经典LDA的小样本问题。 展开更多
关键词 特征提取 线性判别分析(lda) 小样本问题 类间离散度矩阵 类内离散度矩阵 标量化
在线阅读 下载PDF
结合拉曼光谱主成分分析-线性判别进行蛇纹石玉产地溯源的探索 被引量:1
2
作者 叶旭 杨炯 +1 位作者 丘志力 岳紫龙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第9期2551-2558,共8页
蛇纹石是中国最早使用的玉石之一,开展蛇纹石玉的产地溯源探索,对认识中国古代玉文化发展历程,重建古代玉石贸易路线均有重要的意义。但由于蛇纹石玉产地众多,目前尚没有成熟的蛇纹石玉产地溯源的判别技术。以产自陕西汉中、甘肃敦煌、... 蛇纹石是中国最早使用的玉石之一,开展蛇纹石玉的产地溯源探索,对认识中国古代玉文化发展历程,重建古代玉石贸易路线均有重要的意义。但由于蛇纹石玉产地众多,目前尚没有成熟的蛇纹石玉产地溯源的判别技术。以产自陕西汉中、甘肃敦煌、河南栾川、辽宁岫岩、山东泰安、甘肃武山6地的蛇纹石玉为研究对象,在66块样品上共采集到200个高质量拉曼光谱数据,并在对测试结果进行主成分分析(PCA)的基础上建立了线性判别分析(LDA)的产地判别模型。结果显示,不同产地蛇纹石玉的矿物组成有所差异,汉中蛇纹石玉的主要矿物成分有纤蛇纹石和利蛇纹石两种;敦煌蛇纹石玉则为纤蛇纹石和利蛇纹石的均匀混合型;泰安蛇纹石玉的主要矿物成分有利蛇纹石(墨玉)和叶蛇纹石(碧玉和翠斑玉)两种;河南栾川、辽宁岫岩、甘肃武山蛇纹石玉的主要矿物成分均为叶蛇纹石。在严格控制实验条件的前提下,将拉曼光谱数据结合PCA+LDA分析可以对不同产地的蛇纹石玉进行区分,所建立的LDA判别模型的训练集数据和测试集数据的产地判别正确率分别达到了96.25%和92.50%。这显示出利用无损检测拉曼光谱技术进行蛇纹石玉产地溯源具有潜在价值。将拉曼光谱无损检测数据结合统计学或机器学习方法来构建判别模型可能是解决蛇纹石玉产地溯源瓶颈新的技术路径。 展开更多
关键词 蛇纹石玉 拉曼光谱 产地溯源 主成分分析(PCA) 线性判别分析(lda)
在线阅读 下载PDF
基于矩阵分析的线性分组码盲识别 被引量:7
3
作者 刘杰 张立民 占超 《系统工程与电子技术》 EI CSCD 北大核心 2017年第2期404-409,共6页
针对现有的矩阵分析法对线性分组码进行盲识别时,容错性能较差的问题,提出了一种改进的方法。首先利用截获的码字数据建立分析矩阵并进行高斯消元,然后计算各列列重的归一化值,按照判决门限找出分析矩阵中的线性相关列,并以此建立统计量... 针对现有的矩阵分析法对线性分组码进行盲识别时,容错性能较差的问题,提出了一种改进的方法。首先利用截获的码字数据建立分析矩阵并进行高斯消元,然后计算各列列重的归一化值,按照判决门限找出分析矩阵中的线性相关列,并以此建立统计量,最后通过统计量极大值的分布规律完成码长的识别。识别出码长后,通过移位处理及随机交换分析矩阵的行进行多次平均,实现高误码率下码字起点的识别。仿真结果表明,该方法与传统矩阵分析法相比,计算量基本相当,但容错性能有很大提升,能在较高误码率下有效实现线性分组码的盲识别。 展开更多
关键词 线性分组码 矩阵分析 高斯消元 统计判决
在线阅读 下载PDF
近红外光谱结合线性判别分析方法在食醋品牌鉴别中的应用 被引量:11
4
作者 古丽君 林振华 +5 位作者 吴世玉 郑彦婕 周晓文 袁福定 江培淳 林长虹 《食品与发酵工业》 CAS CSCD 北大核心 2019年第18期243-247,共5页
采用近红外光谱技术结合化学计量学手段,建立不同品牌食醋的快速鉴别方法。用近红外光谱仪对103组食醋样品进行扫描,采用二阶导数对图谱进行预处理、标准化处理、T检验和主成分分析(principal component analysis,PCA),运用留一法构建... 采用近红外光谱技术结合化学计量学手段,建立不同品牌食醋的快速鉴别方法。用近红外光谱仪对103组食醋样品进行扫描,采用二阶导数对图谱进行预处理、标准化处理、T检验和主成分分析(principal component analysis,PCA),运用留一法构建线性判别分析(linear discriminant analysis,LDA)模型。结果表明,原始近红外谱图经过处理后,显示出同种品牌食醋主成分的聚类趋势;交叉验证结果表明,PCA-LDA模型预测不同品牌食醋的正确率高达85.57%,该模型具有较好的预测效果。该研究结合近红外光谱与PCA-LDA模型,为不同品牌食醋提供一种快速鉴别方法,具有处理近红外光谱数据,研究物质主成分的应用潜力。 展开更多
关键词 食醋品牌 近红外光谱 线性判别分析(linear DISCRIMINANT analysis lda) 主成分分析(principal component analysis PCA)
在线阅读 下载PDF
一种改进的线性区分分析方法及其在汉语数码语音识别上的应用 被引量:2
5
作者 史媛媛 刘加 刘润生 《电子学报》 EI CAS CSCD 北大核心 2002年第7期959-963,共5页
尽管汉语数码语音识别只涉及十个数字 ,但由于不同数字的发音存在相同或相似的声母或韵母 ,造成汉语数码语音之间的混淆性很大 .采用通常的隐含马尔科夫模型 (HMM)作为汉语数码语音识别模型难以得到很高的识别率 .为了解决汉语数码之间... 尽管汉语数码语音识别只涉及十个数字 ,但由于不同数字的发音存在相同或相似的声母或韵母 ,造成汉语数码语音之间的混淆性很大 .采用通常的隐含马尔科夫模型 (HMM)作为汉语数码语音识别模型难以得到很高的识别率 .为了解决汉语数码之间的混淆问题 ,提高汉语数码语音识别性能 ,本文在隐含马尔科夫模型的状态层次上采用线性区分分析方法 ,将不同状态之间容易混淆的特征样本构成混淆模式类 ,针对混淆模式类进行线性区分分析 .通过线性区分变换 ,在变换特征空间中仅保留那些能够有效区分该混淆类别的特征参数 .这种基于状态的线性区分分析有效地提高了模型对混淆数码的区分能力 .实验表明即使采用状态数很少的粗糙识别模型 ,也能很大幅度提高模型的识别性能 ;经过线性区分变换优化后的汉语数码识别模型 ,孤立汉语数码语音识别率可以达到 99 32 % . 展开更多
关键词 线性区分分析 lda 汉语数码语音识别 区分变换 隐含马尔科夫模型 HMM
在线阅读 下载PDF
基于非相关多线性主成分分析的人脸识别算法 被引量:5
6
作者 杨凌云 秦岸 《无线电通信技术》 2016年第1期73-75,98,共4页
针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至... 针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至向量的过程,可直接获取原张量数据的绝大部分非相关特征,提取的特征再通过经典算法LDA处理。利用AT&T人脸数据库对该算法进行了实验,实验数据分析显示该算法优于其他同类算法。 展开更多
关键词 张量 非相关多线性主成分分析(UMPCA) 线性判别分析(lda) 特征提取
在线阅读 下载PDF
稀疏判决分析在表情识别中的应用 被引量:1
7
作者 黄勇 《计算机工程与应用》 CSCD 2012年第7期172-173,211,共3页
提出了一种基于稀疏判决分析的人脸表情识别方法,称之为SDA。SDA引入稀疏表述并结合半监督判决分析SSDA,通过稀疏重构处理,获得图像的局部结构信息,且由于稀疏表述本身具有的判决性,SDA只需很少样本就能获得较好的效果。基于JAFFE和CED-... 提出了一种基于稀疏判决分析的人脸表情识别方法,称之为SDA。SDA引入稀疏表述并结合半监督判决分析SSDA,通过稀疏重构处理,获得图像的局部结构信息,且由于稀疏表述本身具有的判决性,SDA只需很少样本就能获得较好的效果。基于JAFFE和CED-WYU两个表情数据库的识别结果表明,基于SDA的特征提取方法能有效地提高识别率。 展开更多
关键词 稀疏表述 线性判决分析 半监督判决分析 稀疏判决分析 表情识别
在线阅读 下载PDF
基于残差自然幂法的增量线性判别分析方法
8
作者 陈东岳 吴成东 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期472-475,480,共5页
提出了将增量线性判别分析问题(LDA)转化为两个增量主元分析(PCA)问题的算法框架.为加速算法的收敛速度,推导了增量LDA中训练样本的类内离散度矩阵和协方差矩阵的无损实时更新公式,并在此基础上提出了一种基于残差协方差矩阵的自然幂增... 提出了将增量线性判别分析问题(LDA)转化为两个增量主元分析(PCA)问题的算法框架.为加速算法的收敛速度,推导了增量LDA中训练样本的类内离散度矩阵和协方差矩阵的无损实时更新公式,并在此基础上提出了一种基于残差协方差矩阵的自然幂增量PCA算法.将该增量PCA方法与基于双PCA结构的增量LDA算法框架相结合,实现了数据流的实时LDA处理.仿真结果表明,与已有的增量LDA方法相比,该方法在收敛速度、计算复杂度和可操作性上具有更优的性能. 展开更多
关键词 线性判别分析(lda) 主元分析(PCA) 自然幂法 无损更新 增量算法
在线阅读 下载PDF
稀疏保留判决分析在人脸表情识别中的应用
9
作者 黄勇 《计算机工程》 CAS CSCD 北大核心 2011年第14期167-168,171,共3页
提出一种基于稀疏保留判决分析的人脸表情识别方法——SPDA方法。引入稀疏描述理论结合半监督判决分析SDA,通过稀疏重构处理,可获得图像的局部结构信息。由于稀疏描述本身具有的判决性,SPDA只需少量的样本就能获得较好的效果。CED-WYU和... 提出一种基于稀疏保留判决分析的人脸表情识别方法——SPDA方法。引入稀疏描述理论结合半监督判决分析SDA,通过稀疏重构处理,可获得图像的局部结构信息。由于稀疏描述本身具有的判决性,SPDA只需少量的样本就能获得较好的效果。CED-WYU和JAFFE的2个表情数据库的识别结果表明,该方法能有效提高识别率。 展开更多
关键词 数据降维 线性判决分析 半监督判决分析 稀疏保留判决分析 人脸表情识别
在线阅读 下载PDF
核判决分析及其在表情识别中的应用
10
作者 黄勇 《计算机应用》 CSCD 北大核心 2010年第A01期172-173,184,共3页
提出了一种基于核判决分析(KDA)的人脸表情识别方法。与传统的线性特征提取方法线性判决分析(LDA)不同,针对非线性问题,KDA通过引入核函数进行非线性投影以提取表情特征,克服了LDA算法用于人脸表情识别时存在的问题。基于CED-WYU(1.0)和... 提出了一种基于核判决分析(KDA)的人脸表情识别方法。与传统的线性特征提取方法线性判决分析(LDA)不同,针对非线性问题,KDA通过引入核函数进行非线性投影以提取表情特征,克服了LDA算法用于人脸表情识别时存在的问题。基于CED-WYU(1.0)和JAFFE两个表情数据库的识别结果表明,基于核判决分析KDA的特征提取方法能有效地提高识别率。 展开更多
关键词 线性判决分析 判决分析 表情识别
在线阅读 下载PDF
基于线性判别分析和分步机器学习的变压器故障诊断 被引量:32
11
作者 谢乐 衡熙丹 +2 位作者 刘洋 蒋启龙 刘东 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第11期2266-2272,共7页
为了改善当前变压器故障诊断在特征量选取和使用单一诊断模型进行故障诊断上的不足,提高变压器故障诊断的准确率和效率,提出基于线性判别分析(LDA)的特征选取方法,建立基于分步机器学习的诊断模型.该模型选取16组油中溶解气体体积分数... 为了改善当前变压器故障诊断在特征量选取和使用单一诊断模型进行故障诊断上的不足,提高变压器故障诊断的准确率和效率,提出基于线性判别分析(LDA)的特征选取方法,建立基于分步机器学习的诊断模型.该模型选取16组油中溶解气体体积分数比值的多特征参数,运用线性判别分析对参数进行降维作为输入特征向量;运用概率神经网络对变压器故障做出初步诊断,区分出易混淆故障;使用基于灰狼群算法优化的支持向量机对易混淆故障做进一步的区分.最终实验诊断准确率为97.27%,诊断时间为4.87 s.与单一机器学习模型相比,所提出的模型不仅具有更高的准确率,还具有更高的效率.实例分析表明,本研究方法能有效弥补单一机器学习的缺陷,为故障样本有限情况下的电力变压器故障诊断提供参考. 展开更多
关键词 变压器 故障诊断 机器学习 特征参数 线性判别分析(lda)
在线阅读 下载PDF
改进的核子类判决分析 被引量:1
12
作者 胡利平 殷红成 +1 位作者 陈渤 周平 《系统工程与电子技术》 EI CSCD 北大核心 2011年第5期1176-1181,共6页
提出了改进的核子类判决分析(improvcd kernel clustering-based discriminant analysis,IKCDA)方法,首先采用快速全局核k-均值聚类算法找到每类目标的最优子类划分,然后基于找到的子类划分结果采用核子类判决分析求取最优的投影矢量。... 提出了改进的核子类判决分析(improvcd kernel clustering-based discriminant analysis,IKCDA)方法,首先采用快速全局核k-均值聚类算法找到每类目标的最优子类划分,然后基于找到的子类划分结果采用核子类判决分析求取最优的投影矢量。基于UCI机器学习数据库的实验结果表明,经过IKCDA特征提取后异类样本间的可分性明显改善了。此外,基于美国运动和静止目标获取与识别(moving and stationary target acquisitionand recognition,MSTAR)计划录取的合成孔径雷达地面静止目标数据的实验结果表明,经过IKCDA后可以改善对真实目标的分类性能和对干扰目标的拒判能力。 展开更多
关键词 核方法 线性判决分析 核子类判决分析 快速全局核k-均值聚类算法
在线阅读 下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
13
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(lda) 支持向量机(SVM)
在线阅读 下载PDF
利用电子鼻分析熬制时间对3种食用菌汤风味的影响 被引量:31
14
作者 李琴 朱科学 周惠明 《食品科学》 EI CAS CSCD 北大核心 2010年第16期151-155,共5页
对香菇、双孢蘑菇、牛肝菌3种食用菌进行熬制,得到不同熬制时间的菌汤。利用电子鼻技术对菌汤分别进行测定,通过主成分分析(PCA)和线性判别分析(LDA)两种分析方法对所得数据进行分析。结果表明:利用PCA不能很好区分不同熬制时间的菌汤风... 对香菇、双孢蘑菇、牛肝菌3种食用菌进行熬制,得到不同熬制时间的菌汤。利用电子鼻技术对菌汤分别进行测定,通过主成分分析(PCA)和线性判别分析(LDA)两种分析方法对所得数据进行分析。结果表明:利用PCA不能很好区分不同熬制时间的菌汤风味,但能区分不同品种菌汤的风味,说明PCA是分辨不同种类菌汤的有效分析方法;利用LDA能明显区分不同种类食用菌汤及不同熬制时间的菌汤风味,说明LDA是分辨不同菌汤风味的有效分析方法。 展开更多
关键词 食用菌 电子鼻 主成分分析(PCA) 线性判别分析(lda)
在线阅读 下载PDF
基于优化的LDA算法人脸识别研究 被引量:26
15
作者 庄哲民 张阿妞 李芬兰 《电子与信息学报》 EI CSCD 北大核心 2007年第9期2047-2049,共3页
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩... 提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 展开更多
关键词 线性判别分析(lda) 人脸识别 类间离散度 类内离散度 特征提取
在线阅读 下载PDF
一种新颖的基于LDA的人脸识别方法(英文) 被引量:16
16
作者 张燕昆 刘重庆 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2003年第5期327-330,共4页
提出一种基于离散余弦变换 (DCT)与LDA相结合的人脸识别方法 ,首先利用DCT将图像进行降维 ,然后在低维空间中利用LDA进行特征提取 .利用ORL人脸数据库和我们上海交通大学图像处理与模式识别研究所的人脸数据库进行测试 ,实验结果分别得... 提出一种基于离散余弦变换 (DCT)与LDA相结合的人脸识别方法 ,首先利用DCT将图像进行降维 ,然后在低维空间中利用LDA进行特征提取 .利用ORL人脸数据库和我们上海交通大学图像处理与模式识别研究所的人脸数据库进行测试 ,实验结果分别得到了 97.5 %和 92 .6 %的正确识别率 。 展开更多
关键词 人脸识别 离散余弦变换 线性判别分析 主元分析 图像处理 模式识别 lda
在线阅读 下载PDF
利用标准化LDA进行人脸识别 被引量:22
17
作者 余冰 金连甫 陈平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第3期302-306,共5页
线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变... 线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变权函数 ,使得在选择投影方向时 ,能够更好地分开各个类的样本 ;同时 ,它采用一种合理而有效的方法解决矩阵奇异的问题 ,即保留样本类内离散度矩阵的零空间 ,因为这个空间包含了最具有判别能力的信息 在这个零空间里 ,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵 实验结果显示 ,在人脸识别中 ,与传统LDA方法相比 ,该方法有更好的识别率 展开更多
关键词 线性判别分析(lda) 样本类间离散度 样本类内离散度 小样本集合问题 边缘类
在线阅读 下载PDF
基于小波变换和LDA/FKT及SVM的人耳识别 被引量:13
18
作者 赵海龙 穆志纯 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2273-2278,共6页
人耳识别技术是生物特征识别和人工智能领域的一个重要分支。针对人耳图像自身的特点并通过对现有方法的研究,本文提出了一种新的人耳识别方法,即先对人耳图像进行二维的离散小波分解,然后使用LDA/FKT算法对小波分解后得到的低频信息进... 人耳识别技术是生物特征识别和人工智能领域的一个重要分支。针对人耳图像自身的特点并通过对现有方法的研究,本文提出了一种新的人耳识别方法,即先对人耳图像进行二维的离散小波分解,然后使用LDA/FKT算法对小波分解后得到的低频信息进行降维,进而获得图像的特征向量,最后采用支持向量机作为分类器对样本向量进行判别。实验证明,本文提出的方法不仅较好地解决了人耳识别中的小样本问题,而且还取得了比传统的PCA+LDA方法更高的识别率,是一种有效的人耳识别方法。 展开更多
关键词 人耳识别 小波变换 线性判别分析 lda/FKT 支持向量机
在线阅读 下载PDF
LDA与LSD相结合的车道线分类检测算法 被引量:13
19
作者 郭克友 王艺伟 郭晓丽 《计算机工程与应用》 CSCD 北大核心 2017年第24期219-225,共7页
提出一种车道线分类检测算法。首先采用LDA对道路图像进行有针对性的灰度化,以便更好地区分车道线与道路。采用LSD算法检测灰度图像中的直线部分并确定车道线的方向。在此基础上,选取符合车道线灰度范围内的像素点。对远距离的像素点采... 提出一种车道线分类检测算法。首先采用LDA对道路图像进行有针对性的灰度化,以便更好地区分车道线与道路。采用LSD算法检测灰度图像中的直线部分并确定车道线的方向。在此基础上,选取符合车道线灰度范围内的像素点。对远距离的像素点采用抛物线拟合,近距离的像素点采用直线拟合。同时,将检测到的车道线进行虚线实线的分类标记。最后结合视频序列的连续性对检测结果进行反向验证。实验结果证明,提出的方法对直道弯道检测均有很好的效果。算法的处理速度为每秒10帧左右,采用的测试视频的帧率为每秒15帧,基本满足实时性的要求。 展开更多
关键词 线性判别分析(lda) 线段检测器(LSD) 直线-抛物线模型 车道线分类 视频序列连续性
在线阅读 下载PDF
基于DCT与LDA的仿生人脸识别研究 被引量:6
20
作者 周书仁 邵晶 蒋加伏 《计算机工程与应用》 CSCD 北大核心 2011年第13期208-211,共4页
针对基于DCT变换与LDA的人脸识别方法识别率低和特征提取过程中维数也低,以及基于K-L变换的仿生人脸识别方法识别率高和特征提取过程中维数也过高的问题,结合两者的优点,提出了一种基于DCT与LDA变换的仿生人脸识别的方法。通过DCT变换与... 针对基于DCT变换与LDA的人脸识别方法识别率低和特征提取过程中维数也低,以及基于K-L变换的仿生人脸识别方法识别率高和特征提取过程中维数也过高的问题,结合两者的优点,提出了一种基于DCT与LDA变换的仿生人脸识别的方法。通过DCT变换与LDA对训练人脸样本进行特征提取,通过核函数将提取的特征映射到高维空间,构建各类样本的覆盖区域,再通过判断待识别人脸特征在各覆盖区域的归属情况来识别人脸。在Yale和ORL人脸库上的实验证明提出的方法取得了较好的识别效果。 展开更多
关键词 离散余弦变换(DCT) 线性鉴别分析(lda) 仿生模式识别 高维空间覆盖
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部