The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li...A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.展开更多
The effect of rhamnolipids (RL) on Cd^2+ adsorption by Penicillium simplicissimum (P. simplicissimum) was studied. The maximum adsorption capacities of Cd^2+ were obtained at pH 6.0 for the intact P. sirnpliciss...The effect of rhamnolipids (RL) on Cd^2+ adsorption by Penicillium simplicissimum (P. simplicissimum) was studied. The maximum adsorption capacities of Cd^2+ were obtained at pH 6.0 for the intact P. sirnplicissimurn and at pH 5.0 for the RL-pretreated P. simplicissimum, respectively. The adsorption equilibrium was reached after about 4 h. The experimental adsorption isotherms were in good agreement with the Langmuir model. The maximum adsorption capacities (qmax) for the intact P. simplicissimurn and for the RL-pretreated P. simplicissimum were 51.6 and 70.4 rag/g, respectively. The interactions between Cd^2+ and functional groups on the cell wall surface of the P. simplicissimum were identified by SEM, EDAX and FTIR analysis. It is indicated that carboxyl, amino and hydroxyl groups play major roles in the Cd^2+ adsorption. The results suggest that the RL-pretreated P. simplicissimum is a promising candidate for the removal of Cd^2+ from aqueous solutions.展开更多
A comprehensive thermodynamic model, which combined the Helgeson Kirkham-Flowers (HKF) equation of state for standard-state thermodynamic properties of all species with realistic activity coefficient model developed...A comprehensive thermodynamic model, which combined the Helgeson Kirkham-Flowers (HKF) equation of state for standard-state thermodynamic properties of all species with realistic activity coefficient model developed by BROMLEY, was used to calculate the thermodynamic equilibrium, and a graphical method was developed to construct predominance existence diagrams (PED) for copper-ammonia-chloride in the presence of realistically modeled aqueous solutions. The existence of the different predominant chemical species for Cu(lI) predicted by the diagrams was corroborated by spectrophotometrical studies and X-ray diffractometry. The simulated and experimental results indicate that the predominance of a given species in solution strongly depends on the pH value in this system. More quantitative information on real copper hydrometallurgy in the presence of ammonia and chloride can be obtained from these diagrams compared with the conventional predominance existence diagrams.展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Ef...The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.展开更多
Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electri...Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.展开更多
The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic p...The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.展开更多
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
文摘A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.
基金Project(50978087) supported by the National Natural Science Foundation of ChinaProject(CX2010B157) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The effect of rhamnolipids (RL) on Cd^2+ adsorption by Penicillium simplicissimum (P. simplicissimum) was studied. The maximum adsorption capacities of Cd^2+ were obtained at pH 6.0 for the intact P. sirnplicissimurn and at pH 5.0 for the RL-pretreated P. simplicissimum, respectively. The adsorption equilibrium was reached after about 4 h. The experimental adsorption isotherms were in good agreement with the Langmuir model. The maximum adsorption capacities (qmax) for the intact P. simplicissimurn and for the RL-pretreated P. simplicissimum were 51.6 and 70.4 rag/g, respectively. The interactions between Cd^2+ and functional groups on the cell wall surface of the P. simplicissimum were identified by SEM, EDAX and FTIR analysis. It is indicated that carboxyl, amino and hydroxyl groups play major roles in the Cd^2+ adsorption. The results suggest that the RL-pretreated P. simplicissimum is a promising candidate for the removal of Cd^2+ from aqueous solutions.
基金Project(2007CB613601) supported by the National Basic Research Program of China
文摘A comprehensive thermodynamic model, which combined the Helgeson Kirkham-Flowers (HKF) equation of state for standard-state thermodynamic properties of all species with realistic activity coefficient model developed by BROMLEY, was used to calculate the thermodynamic equilibrium, and a graphical method was developed to construct predominance existence diagrams (PED) for copper-ammonia-chloride in the presence of realistically modeled aqueous solutions. The existence of the different predominant chemical species for Cu(lI) predicted by the diagrams was corroborated by spectrophotometrical studies and X-ray diffractometry. The simulated and experimental results indicate that the predominance of a given species in solution strongly depends on the pH value in this system. More quantitative information on real copper hydrometallurgy in the presence of ammonia and chloride can be obtained from these diagrams compared with the conventional predominance existence diagrams.
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金Project(NIPA-2012-H0401-12-1007) supported by the MKE(The Ministry of Knowledge Economy), Korea, supervised by the NIPAProject(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.
文摘Nonlinear static analysis of piezoelectric plates has been carried out using nonlinear finite element method considering electro-mechanical coupling,The geometrical nonlinearity has been taken into account and electric potential is assumed to be quadratic across the plate thickness,The governing equations are obtained using potential energy and Hamilton's principle that includes elastic and piezoelectric effects.The finite element model is derived based on constitutive equation of piezoelectric material accounting for coupling between elasticity and electric effect using higher order plate elements,Results are presented for piezoelectric plate under different mechanical boundary conditions,Numerical results for the plate are given in dimensionless graphical forms.Effects of boundary conditions on linear and nonlinear response of the plate are also studied.The numerical results obtained by the present model are in good agreement with the available solutions reported in the literature.
文摘The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole(TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.