-
题名基于朴素贝叶斯分类器的纸病离线静态辨识方法研究
被引量:11
- 1
-
-
作者
院金彪
周强
郑海英
郭文强
汤伟
-
机构
陕西科技大学电气与信息工程学院
察右中旗第一中学
-
出处
《中国造纸学报》
CAS
CSCD
北大核心
2014年第1期58-62,共5页
-
基金
陕西省科技统筹创新工程计划项目(2012KTCQ01-19)
陕西省科技攻关项目(2011K06-06)
+2 种基金
陕西省教育厅专项科研计划项目(2010JK420)
陕西科技大学科研启动基金(BJ10-05)
陕西科技大学学术骨干培育计划(XSG2010010)
-
文摘
针对当前纸病处理方法通用性弱、鲁棒性差的问题,研究了一种使用概率精确判别纸病类别的方法。该方法通过训练样本获得各类纸病特征量的条件概率分布,利用朴素贝叶斯分类器原理求得某一纸病特征向量属于各种纸病的后验概率,进而通过比较各后验概率的大小进行纸病辨识,这可满足纸病辨识的静态性能要求,同时,利用朴素贝叶斯分类器具有最小错误率的特点,保证纸病辨识精度。实验结果表明,该方法具有很强的通用性,能够有效、快速地对纸病进行辨识。
-
关键词
朴素贝叶斯分类器
条件概率
后验概率
纸病离线静态辨识
-
Keywords
naive Bayes Classifier
conditional probability
posterior probability
paper defects offline static identification
-
分类号
TS736
[轻工技术与工程—制浆造纸工程]
TP273
[自动化与计算机技术—检测技术与自动化装置]
-