The nano TiO 2/Poly(butyl acrylate) composite film was prepared by in situ polymerization initiated by UV illustration and characterized by FTIR, XPS and HRTEM. The friction behavior of the composite film in sliding a...The nano TiO 2/Poly(butyl acrylate) composite film was prepared by in situ polymerization initiated by UV illustration and characterized by FTIR, XPS and HRTEM. The friction behavior of the composite film in sliding against AISI 52100 steel was examined on a DF PM friction coefficient measurement apparatus. The results indicated that the TiO 2 nanolines were dispersed in the poly(butyl acrylate) network. The film exhibites a good antiwear property.展开更多
文摘采用复合法制备了纳米TiO2/丝素复合膜,并用AFM、EDS和IR对复合膜进行了表征,考察了复合膜的光催化甲基橙行为。结果表明,复合膜制备方法合理,当w(TiO2)=0.1%时,它以粒径50 nm左右均匀分散于复合膜中,复合膜与普通丝素膜仅存在细微的构象差异,因纳米TiO2存在,复合膜对甲基橙降解率达91%,催化性能符合Langmu ir-H im shelwood模型。
文摘The nano TiO 2/Poly(butyl acrylate) composite film was prepared by in situ polymerization initiated by UV illustration and characterized by FTIR, XPS and HRTEM. The friction behavior of the composite film in sliding against AISI 52100 steel was examined on a DF PM friction coefficient measurement apparatus. The results indicated that the TiO 2 nanolines were dispersed in the poly(butyl acrylate) network. The film exhibites a good antiwear property.