为了改善高能太根发射药的力学性能,在高能太根发射药配方的基础上,添加少量(质量分数0.5%,1.0%,1.5%,2.0%)由湿木浆纤维素得到的纳米纤维素纤维(CNFs),制备了含CNFs的高能太根发射药。采用扫描电镜、热重分析仪和差示扫描量热仪研究了...为了改善高能太根发射药的力学性能,在高能太根发射药配方的基础上,添加少量(质量分数0.5%,1.0%,1.5%,2.0%)由湿木浆纤维素得到的纳米纤维素纤维(CNFs),制备了含CNFs的高能太根发射药。采用扫描电镜、热重分析仪和差示扫描量热仪研究了添加CNFs前后高能太根发射药的表面结构和热分解性能。采用简支梁冲击试验机和密闭爆发器试验研究了含CNFs高能太根发射药的冲击强度及能量性能。结果表明,少量添加CNFs可明显提高高能太根发射药的低温冲击强度,对热分解性能影响很小。与高能太根发射药(参比样)相比,添加0.5%CNFs的高能太根发射药,在-40℃低温和20℃室温下,冲击强度分别提高了30.4%和8.9%。随着CNFs含量增加,火药力逐渐降低,余容逐渐上升,燃速逐渐减小,压力指数小幅度上升。当CNFs的添加量为0.5%时,高能太根发射药的火药力为1191.91 k J·kg^(-1),余容为0.870 L·kg^(-1),压力指数为1.06,分别较参比样减少了1.9%、增加了5.1%和增加了4.2%。展开更多
采用TEMPO(四甲基哌啶氧化物)氧化法,通过调整氧化剂的用量制备不同形貌的纤维素纳米纤维(CNF),探索不同形貌和浓度的纤维素纳米纤维在蒸煮大米保鲜过程中的表现差异以及造成这些差异的机制。结果表明:CNF5(5 g NaClO)纤维较粗,易形成...采用TEMPO(四甲基哌啶氧化物)氧化法,通过调整氧化剂的用量制备不同形貌的纤维素纳米纤维(CNF),探索不同形貌和浓度的纤维素纳米纤维在蒸煮大米保鲜过程中的表现差异以及造成这些差异的机制。结果表明:CNF5(5 g NaClO)纤维较粗,易形成大尺寸网络通道,气体阻隔性较差,保鲜效果不理想;CNF10(10 g NaClO)纤维尺寸均匀且具有良好的柔韧性,能够紧密堆叠形成致密薄膜,其较高的表面官能团密度增强了气体吸附能力,显著提升了阻隔性能,表现出最佳的保鲜效果;CNF40(40 g NaClO)则因其刚性棒状纤维在堆积时难以紧密结合,容易形成贯通通道,增加了水蒸气和氧气的穿透性,保鲜效果略逊于CNF10。展开更多
文摘为了改善高能太根发射药的力学性能,在高能太根发射药配方的基础上,添加少量(质量分数0.5%,1.0%,1.5%,2.0%)由湿木浆纤维素得到的纳米纤维素纤维(CNFs),制备了含CNFs的高能太根发射药。采用扫描电镜、热重分析仪和差示扫描量热仪研究了添加CNFs前后高能太根发射药的表面结构和热分解性能。采用简支梁冲击试验机和密闭爆发器试验研究了含CNFs高能太根发射药的冲击强度及能量性能。结果表明,少量添加CNFs可明显提高高能太根发射药的低温冲击强度,对热分解性能影响很小。与高能太根发射药(参比样)相比,添加0.5%CNFs的高能太根发射药,在-40℃低温和20℃室温下,冲击强度分别提高了30.4%和8.9%。随着CNFs含量增加,火药力逐渐降低,余容逐渐上升,燃速逐渐减小,压力指数小幅度上升。当CNFs的添加量为0.5%时,高能太根发射药的火药力为1191.91 k J·kg^(-1),余容为0.870 L·kg^(-1),压力指数为1.06,分别较参比样减少了1.9%、增加了5.1%和增加了4.2%。
文摘采用TEMPO(四甲基哌啶氧化物)氧化法,通过调整氧化剂的用量制备不同形貌的纤维素纳米纤维(CNF),探索不同形貌和浓度的纤维素纳米纤维在蒸煮大米保鲜过程中的表现差异以及造成这些差异的机制。结果表明:CNF5(5 g NaClO)纤维较粗,易形成大尺寸网络通道,气体阻隔性较差,保鲜效果不理想;CNF10(10 g NaClO)纤维尺寸均匀且具有良好的柔韧性,能够紧密堆叠形成致密薄膜,其较高的表面官能团密度增强了气体吸附能力,显著提升了阻隔性能,表现出最佳的保鲜效果;CNF40(40 g NaClO)则因其刚性棒状纤维在堆积时难以紧密结合,容易形成贯通通道,增加了水蒸气和氧气的穿透性,保鲜效果略逊于CNF10。
文摘构建季铵化纤维素纳米纤维(quaternized cellulose nanofiber,QCNF)/玉米醇溶蛋白(zein)核壳递送体系,通过精准调控季铵化纤维素质量浓度(0.05~0.25 g/100 mL)揭示递送体系对岩藻黄质(fucoxanthin,FUC)稳态化及靶向递送的调控机制。傅里叶变换红外光谱表明zein与纳米纤维之间通过静电作用形成稳定界面;透射电子显微图像显示0.2 g/100 mL QCNF组形成显著的逐层自组装核壳结构,对FUC的包封率达(95.64±0.06)%。环境稳定性实验表明,优化组(0.2 g/100 mL QCNF/zein@FUC)的热、光、pH值、离子、贮藏稳定性较对照组(zein@FUC)提升。另外,通过引入QCNF覆盖于zein表面,能够引发内部FUC的被动靶向释放行为,提高FUC在肠道的生物可及性。体外模拟消化实验结果表明,0.2 g/100 mL QCNF/zein@FUC在模拟胃肠道的累计释放量为(85.32±0.46)%,生物可及性高达(58.77±3.84)%,实现了FUC的程序性缓释。本研究结果为探究天然生物基自组装纳米递送载体的形成机理与稳态化靶向释放性能提供了理论支持。