To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen...To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.展开更多
Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical ...Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.展开更多
基金Projects(U23B2093,52274245)supported by the National Natural Science Foundation of ChinaProject(KFJJ22-15M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China。
文摘To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.
基金Project(50975058) supported by the National Natural Science Foundation of China
文摘Low dielectric constant materials/Cu interconnects integration technology provides the direction as well as the challenges in the fabrication of integrated circuits(IC) wafers during copper electrochemical-mechanical polishing(ECMP). These challenges arise primarily from the mechanical fragility of such dielectrics, in which the undesirable scratches are prone to produce. To mitigate this problem, a new model is proposed to predict the initiation of scratching based on the mechanical properties of passive layer and copper substrate. In order to deduce the ratio of the passive layer yield strength to the substrate yield strength and the layer thickness, the limit analysis solution of surface scratch under Berkovich indenter is used to analyze the nano-scratch experimental measurements. The modulus of the passive layer can be calculated by the nano-indentation test combined with the FEM simulation. It is found that the film modulus is about 30% of the substrate modulus. Various regimes of scratching are delineated by FEM modeling and the results are verified by experimental data.