期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于广义回归神经网络的税务稽查选案实证研究 被引量:3
1
作者 楼文高 娄元英 尹淑平 《广东商学院学报》 CSSCI 北大核心 2013年第6期74-80,共7页
针对企业纳税稽查选案,采用全部样本和五重-交叉检验法(CV)分别建立线性回归、判别分析、Logistic、支持向量机(SVM)和广义回归神经网络(GRNN)模型,比较研究不同模型的建模结果。GRNN模型结构简单,训练速度快,能很好地进行小样本、连续... 针对企业纳税稽查选案,采用全部样本和五重-交叉检验法(CV)分别建立线性回归、判别分析、Logistic、支持向量机(SVM)和广义回归神经网络(GRNN)模型,比较研究不同模型的建模结果。GRNN模型结构简单,训练速度快,能很好地进行小样本、连续非线性系统建模。实证研究结果表明,GRNN模型非常适用于税务稽查选案研究,在上述五种模型中,分类错误率最低,小于10%。 展开更多
关键词 纳税稽查选案 广义回归神经网络 分类错误率 五重-交叉检验法 评价指标体系
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部