期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
融合自注意力和图卷积的多视图群组推荐 被引量:1
1
作者 王永贵 王芯茹 《计算机工程与应用》 CSCD 北大核心 2024年第8期287-295,共9页
为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群... 为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群组、用户和项目三者之间的高阶交互信息,缓解数据稀疏问题,增强群组表示建模过程;对于项目级视图,利用基于二分图的图卷积神经网络来学习群组偏好向量以及项目嵌入;进一步提出了自适应融合组件来动态调整不同视图权重,得到最终的群组偏好向量。在两个真实数据集上的实验结果表明,与基线模型相比,MVGR模型的命中率(HR)和归一化折损累计增益(NDCG)在Mafengwo数据集上平均提高了8.89个百分点和1.56个百分点,在CAMRa2011数据集上平均提高了2.79个百分点和2.7个百分点。 展开更多
关键词 推荐 自注意力机制 图卷积神经网络 自适应融合
在线阅读 下载PDF
基于注意力机制的群组行为识别方法 被引量:3
2
作者 王传旭 龚玉婷 《数据采集与处理》 CSCD 北大核心 2019年第3期406-413,共8页
在基于视频图像的群组行为识别方法中,传统的深度学习方法大多使用标准(最大/平均)池化操作对卷积特征进行处理,并且未考虑群组行为中的关键人物对群组行为分类的重要性。针对以上问题,本文提出一种基于注意力机制的模型来检测群组行为... 在基于视频图像的群组行为识别方法中,传统的深度学习方法大多使用标准(最大/平均)池化操作对卷积特征进行处理,并且未考虑群组行为中的关键人物对群组行为分类的重要性。针对以上问题,本文提出一种基于注意力机制的模型来检测群组行为视频中的行为,重点关注活动中的关键人物,根据注意力权重的不同分配动态地对卷积特征进行池化,最终正确识别视频图像中的群组行为。此模型在群组行为数据集CAD(Collective activity dataset)和CAE(Collective activity extendeddataset)上的识别准确率优于许多使用标准池化结构的现有模型。 展开更多
关键词 行为 图像处理 注意力机制 行为识别
在线阅读 下载PDF
融合双层注意力机制的群组偏好融合策略研究 被引量:5
3
作者 梅雨竹 胡竹林 朱欣娟 《计算机工程与应用》 CSCD 北大核心 2023年第9期272-279,共8页
当前推荐系统研究热点及其演变趋势之一是个性化推荐由关注个体推荐逐步转向关注群体推荐。目前多数群组推荐方法在选择偏好融合策略时习惯采用预定义的静态策略,而静态策略的特点就导致算法无法最大化模拟出群组决策的真实过程。在前... 当前推荐系统研究热点及其演变趋势之一是个性化推荐由关注个体推荐逐步转向关注群体推荐。目前多数群组推荐方法在选择偏好融合策略时习惯采用预定义的静态策略,而静态策略的特点就导致算法无法最大化模拟出群组决策的真实过程。在前人研究的基础之上提出一种基于双层注意力机制的群组推荐方法,该方法充分考虑到群体用户的差异性和相互影响,以及对于不同领域的决策权等问题。计算群组内每位成员对其他成员的注意力权重,获得群组成员特征向量,再计算每个成员在选择某一个项目的注意力权重,为群组生成对于该项目的偏好向量,以此来充分还原群组用户之间的交互以及群组决策的过程。通过在CAMRa2011和Meetup数据集上与COM、SIG、AGR、AGREE、FastGR等方法在不同参数条件下进行了对比,在归一化折扣累计增益和命中率两个指标上,相较基线模型平均提高了0.025 4和0.030 7。 展开更多
关键词 推荐 注意力机制 偏好融合策略 推荐算法
在线阅读 下载PDF
基于分块注意力机制和交互位置关系的群组活动识别
4
作者 刘博 卿粼波 +2 位作者 王正勇 刘美 姜雪 《计算机应用》 CSCD 北大核心 2022年第7期2052-2057,共6页
复杂场景下的群体活动识别是一项具有挑战性的任务,它涉及一组人在场景中的相互作用和相对空间位置关系。针对当前复杂场景下群组行为识别方法缺乏精细化设计以及没有充分利用个体间交互式特征的问题,提出了基于分块注意力机制和交互位... 复杂场景下的群体活动识别是一项具有挑战性的任务,它涉及一组人在场景中的相互作用和相对空间位置关系。针对当前复杂场景下群组行为识别方法缺乏精细化设计以及没有充分利用个体间交互式特征的问题,提出了基于分块注意力机制和交互位置关系的网络框架,进一步考虑个体肢体语义特征,同时挖掘个体间交互特征相似性与行为一致性的关系。首先,采用原始视频序列和光流图像序列作为网络的输入,并引入一种分块注意力模块来细化个体的肢体运动特征;然后,将空间位置和交互式距离作为个体的交互特征;最后,将个体运动特征和空间位置关系特征融合为群体场景无向图的节点特征,并利用图卷积网络(GCN)进一步捕获全局场景下的活动交互,从而识别群体活动。实验结果表明,此框架在两个群组行为识别数据集(CAD和CAE)上分别取得了92.8%和97.7%的识别准确率,在CAD数据集上与成员关系图(ARG)和置信度能量循环网络(CERN)相比识别准确率分别提高了1.8个百分点和5.6个百分点,同时结合消融实验结果验证了所提算法有较高的识别精度。 展开更多
关键词 活动识别 注意力机制 交互关系 视频理解 图卷积网络
在线阅读 下载PDF
一种基于自注意力机制的组推荐方法 被引量:11
5
作者 刘浩翰 任洪润 贺怀清 《计算机应用研究》 CSCD 北大核心 2020年第12期3572-3577,共6页
基于自注意力网络和神经协同过滤模型(neural collaborative filtering,NCF)提出一种基于自注意力机制的组推荐系统模型SAGR(self-attention group recommendation),用于建模用户交互数据以及学习群组潜在偏好的表示。通过在用户级和项... 基于自注意力网络和神经协同过滤模型(neural collaborative filtering,NCF)提出一种基于自注意力机制的组推荐系统模型SAGR(self-attention group recommendation),用于建模用户交互数据以及学习群组潜在偏好的表示。通过在用户级和项目级分别使用自注意力机制,动态调整组中每个用户的权重,解决偏好融合问题从而得到组表示。再通过多层神经网络框架NCF从数据中挖掘组和项目之间的交互,最终完成群组推荐。在CAMRa2011和MovieLens数据集上与同类方法进行对比,实验结果表明SAGR方法能够取得更好的组推荐结果。 展开更多
关键词 推荐 自注意力机制 协同过滤 深度学习 融合策略
在线阅读 下载PDF
注意力感知的群组Next事件推荐策略
6
作者 廖国琼 杨乐川 +2 位作者 万常选 刘德喜 刘喜平 《计算机科学与探索》 CSCD 北大核心 2023年第2期499-510,共12页
近年来,基于事件社会网络(EBSN)逐渐成为人们寻找感兴趣事件的有效途径,如何将事件精准地推荐给有需求的用户已成为该领域的重要主题。下一个项目推荐能够捕获用户的动态偏好,在电子商务等领域取得较好推荐效果。然而,鲜见有关EBSN中的... 近年来,基于事件社会网络(EBSN)逐渐成为人们寻找感兴趣事件的有效途径,如何将事件精准地推荐给有需求的用户已成为该领域的重要主题。下一个项目推荐能够捕获用户的动态偏好,在电子商务等领域取得较好推荐效果。然而,鲜见有关EBSN中的面向群组的下一个(Next)事件推荐研究。主要研究面向群组的Next事件推荐策略,但由于群组偏好会发生动态变化,且事件生命周期短、新事件冷启动等问题使得针对群组进行Next事件推荐变得更加困难。首先,针对群组偏好会随时间发生动态变化的特征,将群组与事件的历史交互划分为多个时段。考虑到划分后群组成员数据变得更加稀疏,不利于群组偏好建模,采用基于参与度的排序策略提取当前时段核心成员的成员偏好,并利用注意力机制融合出群组静态偏好。然后,通过序列模型将各个时段的静态偏好融合得到群组动态偏好。最后,将事件推荐视为多标签分类问题,即将上下文看作事件的多个标签,通过预测各个上下文的概率分布以匹配事件,从而有效缓解新事件冷启动问题。实验结果表明,所提出的推荐策略具有较好的性能。 展开更多
关键词 基于事件社会网络(EBSN) 下一个事件推荐 推荐 注意力机制 多标签分类
在线阅读 下载PDF
基于图卷积网络融合群组关系的社会化推荐方法 被引量:3
7
作者 陈昱瑾 王晶 +2 位作者 武志昊 赵耀帅 林友芳 《计算机工程》 CAS CSCD 北大核心 2023年第5期112-121,共10页
协同过滤推荐系统普遍面临交互数据稀疏,社会化推荐通过引入用户社交信息来缓解数据稀疏问题。现有社会化推荐方法主要关注好友关系,即用户间形成的直接社交关系,但社交数据的稀疏性限制了该类方法的性能表现。由用户加入兴趣小组所形... 协同过滤推荐系统普遍面临交互数据稀疏,社会化推荐通过引入用户社交信息来缓解数据稀疏问题。现有社会化推荐方法主要关注好友关系,即用户间形成的直接社交关系,但社交数据的稀疏性限制了该类方法的性能表现。由用户加入兴趣小组所形成的群组关系数量繁多且富有价值,然而目前较少有研究关注这种关系,仅有的方法多采用矩阵分解等传统方法建模,对用户协同兴趣和社交影响的表达不够深入。为提升推荐质量,进一步研究群组关系,从缓解社交数据稀疏性的角度论证其在辅助推荐方面的作用,并基于建模能力更强的图卷积网络学习用户、项目与群组之间的高阶关系,分别设计出以间接和直接方式利用群组关系的推荐方法IGRec-Trans和IGRec-Direc,探索更合理的群组关系融合方式。在真实数据集上的实验结果表明,所提方法能有效提升推荐性能,相比最优基准方法DiffNet++,在HR@10和NDCG@10指标上最高可提升4.55%和3.98%,在冷启动用户推荐任务上NDCG@10指标最高可提升18.6%。 展开更多
关键词 社会化推荐 关系 图卷积网络 表示学习 注意力机制
在线阅读 下载PDF
融合隐式信任与属性偏好的群组推荐算法
8
作者 边纪超 庞继芳 宋鹏 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期803-812,共10页
随着互联网和推荐系统的不断发展,推荐服务的对象由单一用户扩展为群组成员,获取并融合组内成员的偏好、提升群组推荐效果成为当前推荐领域研究的热点问题.利用用户提供的多属性评分矩阵,提出一种融合隐式信任与属性偏好的群组推荐算法... 随着互联网和推荐系统的不断发展,推荐服务的对象由单一用户扩展为群组成员,获取并融合组内成员的偏好、提升群组推荐效果成为当前推荐领域研究的热点问题.利用用户提供的多属性评分矩阵,提出一种融合隐式信任与属性偏好的群组推荐算法.首先,基于用户共同评分项目数和多属性评分相似度计算用户间的直接隐式信任,并利用信任传递机制获取用户间的间接信任,降低数据稀疏性.然后,通过计算用户各属性评分与总体评分间的距离来挖掘用户的属性偏好,在此基础上,利用注意力机制学习组内用户权重,将用户偏好聚合为群组偏好,进而结合深度学习框架对候选项目进行预测,生成最终的推荐列表.最后,四个数据集上的实验验证了提出的算法的有效性和可行性,实验结果表明,该算法的准确率、nDCG等评价指标明显优于对比算法. 展开更多
关键词 推荐 多属性评分矩阵 隐式信任 属性偏好 注意力机制
在线阅读 下载PDF
基于改进RT-Detr的黄瓜果实选择性采摘识别方法 被引量:1
9
作者 董适 赵国瑞 +2 位作者 苟豪 文剑 林晨 《农业工程学报》 北大核心 2025年第1期212-220,共9页
为了实现光照变化等复杂环境下果实的选择性采摘,该研究以黄瓜为研究对象,以RT-Detr为基线网络,提出了RT-Detr-EV模型。首先在主干网络中添加RepVGG模块,以加强网络特征提取能力,并减少推理时计算量;加入轻量化自注意力机制,减少计算量... 为了实现光照变化等复杂环境下果实的选择性采摘,该研究以黄瓜为研究对象,以RT-Detr为基线网络,提出了RT-Detr-EV模型。首先在主干网络中添加RepVGG模块,以加强网络特征提取能力,并减少推理时计算量;加入轻量化自注意力机制,减少计算量,增加网络深度;最后使用MPDIoU(minimum point distance based intersection over union)替换原模型中的损失函数,加快模型的收敛,提高模型的检测准确率。研究表明,改进RT-Detr-EV的平均精度均值mAP50相较于原模型提升了3.2个百分点,检测速度相较原模型提升了17.4帧/s。与YOLOv7-X、YOLOv8-l相比,对非适宜采摘的黄瓜识别准确率分别提升4.6、6.5个百分点,检测速度分别提升了40.6、25帧/s,参数量分别减少了55.5%、27.3%。同时试验证明,模型对光照条件多种变化的采摘场景也具有一定的鲁棒性与泛化能力。该研究提出的RT-Detr-EV模型能够满足复杂生长环境黄瓜果实的实时检测需求,可为后续移动式选择性采摘的研究提供技术支持。 展开更多
关键词 图像识别 目标检测 黄瓜 选择性采摘 RT-Detr 级联群组自注意力机制
在线阅读 下载PDF
基于改进YOLOv4算法的煤矿火灾视频智能识别方法研究 被引量:1
10
作者 王伟峰 李煜 +4 位作者 田丰 张宝宝 何地 李高爽 李卓洋 《中国煤炭》 北大核心 2025年第2期88-95,共8页
随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算... 随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算法降低模型训练时批量值大小引起的误差;为降低矿井环境对火焰识别造成的火焰边缘信息损失,采用随机池化算法与SPP金字塔算法融合、深度可分离卷积与CSP算法融合,实现对动态演化的火焰进行跨尺度特征提取并融合、避免训练过程中的过拟合现象;为降低光源分布不均对视频火焰识别的影响,在模型中引入动态注意力机制,根据火灾视频识别信息的刺激强弱自动调整感受野大小。将标注后的火灾视频图像数据集输入到F YOLOv4算法模型进行训练及测试。结果表明,改进后的F YOLOv4火灾识别模型的平均检测精度达到97.3%左右,较原始模型提升了7.85%,表明该方法可提高检测速度和精度,可有效提高煤矿火灾识别的准确率。 展开更多
关键词 YOLOv4 CSP改进 SPP改进 归一化 动态注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部