期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进级联卷积神经网络的交通标志识别 被引量:11
1
作者 王海 王宽 +2 位作者 蔡英凤 刘泽 陈龙 《汽车工程》 EI CSCD 北大核心 2020年第9期1256-1262,1269,共8页
自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改... 自动驾驶场景中交通标志的检测和识别十分重要,为提高自然场景下交通标志检测精度,本文中提出了一种基于Cascade-RCNN改进的交通标志识别算法。首先,针对交通标志这类小目标特殊任务,将FPN模块的深层特征信息融合进浅层特征层。其次,改进了目标检测任务中的评价指标IoU,引入目标检测任务的直接评价指标GIoU指导定位任务,提高了检测精度。最后,算法在德国交通标志数据集GTSDB下进行了实验验证,以ResNet101为基础特征提取网络,mAP可达98.8%,实验结果表明了所提算法的有效性,具有优越的工程实用价值。 展开更多
关键词 交通标志检测 深度学习 卷积神经网络 级联RCNN
在线阅读 下载PDF
基于级联卷积神经网络的手势特征提取方法 被引量:2
2
作者 陈金龙 瞿元昊 +3 位作者 杨明浩 强保华 唐仁俊 朱庆杰 《计算机应用》 CSCD 北大核心 2020年第S01期74-79,共6页
针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角... 针对当前手势图像数据集不能均匀、全面地覆盖所有手势参数空间内的各种手势的问题,提出一种基于级联卷积神经网络的手势特征提取方法。该方法通过级联式模型,分层次地对高维度、高自由度的手势参数进行特征感知和提取。首先,将手腕角度参数作为手势参数的全局参数,进行划分和特征提取;然后,将手指角度参数作为局部参数,进行特征提取。为解决局部参数特征提取网络数量过多的问题,减少神经网络的数量和节约训练网络所需的时间与内存开销,采用多分支结构的神经网络模型,将五个手指的局部特征提取网络集成为一个整体。实验结果表明,所提方法在真实训练集上平均分类准确率达到95.13%,测试集平均准确率达到54%,测试集准确率相较于全卷积神经网络的算法提高了4.76个百分点。 展开更多
关键词 手势主方向 特征提取 多分支结构 级联卷积神经网络 手势数据集
在线阅读 下载PDF
基于优化多任务级联卷积神经网络的多人目标侦测 被引量:3
3
作者 陈英 李志勇 《传感器与微系统》 CSCD 北大核心 2022年第7期118-121,共4页
针对多人目标侦测识别的速度问题,提出了一种优化的多任务级联卷积神经网络(OMTCCNN)。首先,对CelebA数据集进行增样处理;其次,对MTCCNN进行关键点的回归,同时加入Dropout抑制部分神经元,加速侦测时间;最后,通过Arc-SoftMax增大类间距,... 针对多人目标侦测识别的速度问题,提出了一种优化的多任务级联卷积神经网络(OMTCCNN)。首先,对CelebA数据集进行增样处理;其次,对MTCCNN进行关键点的回归,同时加入Dropout抑制部分神经元,加速侦测时间;最后,通过Arc-SoftMax增大类间距,优化SoftMax分类效果。基于召回率、精确率和运行时间等评价指标的对比,结果表明:优化后的OMTCCNN时间上略有提升,人脸识别在Arc-SoftMax上的分类效果明显,可以用于小范围多人目标侦测。 展开更多
关键词 多人目标侦测 多任务级联 卷积神经网络
在线阅读 下载PDF
基于级联卷积神经网络的人脸检测算法 被引量:18
4
作者 孙康 李千目 李德强 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第1期40-47,共8页
为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法。首先通过融合全脸与部分人脸的... 为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法。首先通过融合全脸与部分人脸的全卷积神经网络置信图谱快速定位人脸候选区域,然后采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精确度。所提出的方法与一些代表性的算法对比和分析,在FDDB、AFW权威评测集上达到了可比较的精度,且能快速地进行检测。 展开更多
关键词 人脸检测 级联结构 神经网络 卷积网络 无约束条件
在线阅读 下载PDF
尺度无关的级联卷积神经网络人脸检测算法 被引量:6
5
作者 郑成浩 刘兵 周勇 《计算机应用研究》 CSCD 北大核心 2019年第2期593-597,605,共6页
卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神... 卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息。另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱。针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法。该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测。同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择。在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测性能,并降低了检测人脸的时间。 展开更多
关键词 级联卷积神经网络 空间金字塔池化 人脸检测
在线阅读 下载PDF
基于级联卷积神经网络的图像篡改检测算法 被引量:9
6
作者 毕秀丽 魏杨 +2 位作者 肖斌 李伟生 马建峰 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2987-2994,共8页
基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然... 基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然可以学习更高级的语义信息,但检测定位篡改区域效果并不理想。该文提出一种基于级联卷积神经网络的图像篡改检测算法,在卷积神经网络所展示出来的普遍特性的基础上进一步探究其深层次的特性,利用浅层稀神经元的级联网络结构弥补以往深层多神经元的单一网络结构在图像篡改检测中的缺陷。该文提出的检测算法由级联卷积神经网络和自适应筛选后处理两部分组成,级联卷积神经网络实现分级式的篡改区域定位,自适应筛选后处理对级联卷积神经网络的检测结果进行优化。通过实验对比,该文算法展示了较好的检测效果,且具有较高的鲁棒性。 展开更多
关键词 图像篡改检测 级联卷积神经网络 浅层稀神经 级联网络结构 自适应筛选后处理
在线阅读 下载PDF
基于级联卷积神经网络的荧光免疫层析图像峰值点定位方法研究 被引量:3
7
作者 张栋 杜康 +2 位作者 韩文念 李秀梅 汪曣 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第1期217-227,共11页
针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标检测的级联卷积神经网络(CNN)算法。第一层级联算法首先使用经改进的AlexNet算法对荧光免疫层析定量图像中包含质控(C)峰和检测... 针对目前荧光免疫层析定量图像峰值点定位易受多种因素影响,导致物质定量准确度低的问题,提出了一种融合目标检测的级联卷积神经网络(CNN)算法。第一层级联算法首先使用经改进的AlexNet算法对荧光免疫层析定量图像中包含质控(C)峰和检测(T)峰的区域进行检测和提取。之后将提取到的图像区域送入第二层级联卷积神经网络中,对C峰和T峰的位置进行快速定位。随后将定位结果输入到第三层级联卷积神经网络中,对上一层输出的C峰和T峰的定位结果进行精准微调。最后输出C峰和T峰的准确定位信息。实验结果表明,提出的级联卷积神经网络算法,对荧光免疫层析图像峰值点的平均定位准确度达到了96%以上,提高了峰值点的定位准确度。 展开更多
关键词 荧光免疫层析 目标检测 峰值点定位 级联卷积神经网络
在线阅读 下载PDF
基于级联卷积神经网络的作物病害叶片分割 被引量:10
8
作者 王振 张善文 赵保平 《计算机工程与应用》 CSCD 北大核心 2020年第15期242-250,共9页
针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG1... 针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG16模型构建区域病斑检测网络(Regional Detection Network,RD-net),利用全局池化层代替全连接层,由此减少模型参数,实现叶片病斑区域精确定位。基于Encoder-Decoder模型结构建立区域分割网络(Regional Segmentation Network,RS-net),并利用多尺度卷积核提高原始卷积核的局部感受野,对病斑区域精确分割。在不同环境下的病害叶片图像上进行分割实验,分割精度为87.04%、召回率为78.31%、综合评价指标值为88.22%、单幅图像分割速度为0.23 s。实验结果表明该方法能够满足不同环境下的作物病害叶片图像分割需求,可为进一步的作物病害识别方法研究提供参考。 展开更多
关键词 卷积神经网络 图像分割 作物病害 级联卷积神经网络
在线阅读 下载PDF
基于级联卷积神经网络的彩色图像三维手势估计 被引量:1
9
作者 刘玮 戴仕明 +2 位作者 杨文姬 杨红云 钱文彬 《小型微型计算机系统》 CSCD 北大核心 2020年第3期558-563,共6页
估计手的三维姿态是人机交互中重要的组成部分.针对从单个彩色图像估计准确的三维手势困难这一问题,提出了一种基于级联卷积神经网络的估计方法,该级联网络分三阶段,手部掩膜估计、二维手势估计和三维手势估计,三阶段级联网络进行端到... 估计手的三维姿态是人机交互中重要的组成部分.针对从单个彩色图像估计准确的三维手势困难这一问题,提出了一种基于级联卷积神经网络的估计方法,该级联网络分三阶段,手部掩膜估计、二维手势估计和三维手势估计,三阶段级联网络进行端到端的训练,可以实现相互促进,最终优化三维手势估计的准确性.在两个公共数据集上进行了实验,实验结果表明该级联网络产生了卓越的三维手势估计精度,验证了该级联网络的有效性. 展开更多
关键词 级联卷积神经网络 手势估计 三维手姿态 彩色图像
在线阅读 下载PDF
基于级联卷积神经网络的高效目标检测方法 被引量:12
10
作者 宋云博 陈冬艳 +1 位作者 郝赟 付先平 《计算机工程与应用》 CSCD 北大核心 2021年第5期139-145,共7页
目标检测作为计算机视觉的重要研究方向,在智慧城市、无人驾驶等领域的作用越来越重要。传统目标检测算法中,根据交并比(Intersection over Union,IOU)的大小判断正负样本,但较低的IOU会引入噪声,降低检测器的精度;较高的IOU会保留少数... 目标检测作为计算机视觉的重要研究方向,在智慧城市、无人驾驶等领域的作用越来越重要。传统目标检测算法中,根据交并比(Intersection over Union,IOU)的大小判断正负样本,但较低的IOU会引入噪声,降低检测器的精度;较高的IOU会保留少数高质量样本,造成过拟合;并且推荐区域和检测器的IOU阈值相差过大会引起质量不匹配问题。针对上述问题,提出了一种基于级联网络的平行级联检测网络,它由一系列检测器串并联而成,每个检测器设置递增的IOU阈值,从而在每个阶段都会得到一个更高质量的样本分布来训练下一级检测器,并逐步重采样减少过拟合。实验结果表明提出的平行级联检测网络的检测精度优于传统目标检测算法,在目标检测数据集Microsoft COCO上平均准确度(AP)提升了1.5个百分点左右。 展开更多
关键词 卷积神经网络 深度学习 级联网络 高精度目标检测
在线阅读 下载PDF
基于双网络级联卷积神经网络的设计 被引量:7
11
作者 潘兵 曾上游 +2 位作者 杨远飞 周悦 冯燕燕 《电光与控制》 CSCD 北大核心 2019年第2期57-61,共5页
传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特... 传统的卷积神经网络通常采用单一的网络结构进行特征提取,但是单一网络结构提取的特征不够充分,导致图片分类的精度不高。针对这个问题提出了采用两种网络同时进行特征提取,再将两种网络级联在一起,得到两种网络的融合特征,使提取的特征更具有辨别性。双网络级联是采用两条支路进行特征提取,一条支路为传统的CNN,另一条支路为在传统的CNN基础上加上残差操作,在下一次特征图降维前通过级联操作将两条不同的网络支路结合在一起。本网络实验采用101_food和caltech256数据集进行测试,将级联后的网络和两条支路网络进行对比,实验最后表现出较好的结果。 展开更多
关键词 图像识别 卷积神经网络 网络级联 特征图
在线阅读 下载PDF
基于级联深度卷积神经网络的高性能图像超分辨率重构 被引量:3
12
作者 郭晓 谭文安 《计算机应用》 CSCD 北大核心 2017年第11期3124-3127,3144,共5页
为了进一步提高现有图像超分辨率重构方法所得图像的分辨率,提出一种高性能的深度卷积神经网络(HDCN)模型用于重构放大倍数固定的超分辨率图像。通过建立级联HDCN模型解决传统模型重构图像时放大倍数无法按需选择的问题,并在级联过程中... 为了进一步提高现有图像超分辨率重构方法所得图像的分辨率,提出一种高性能的深度卷积神经网络(HDCN)模型用于重构放大倍数固定的超分辨率图像。通过建立级联HDCN模型解决传统模型重构图像时放大倍数无法按需选择的问题,并在级联过程中引入深度边缘滤波器以减少级联误差,突出边缘信息,从而得到高性能的级联深度卷积神经网络(HCDCN)模型。基于Set5、Set14数据集进行超分辨率图像重构实验,证明了引入深度边缘滤波器的有效性,对比HCDCN方法与其他图像超分辨率重构方法的性能评估结果,展现了HCDCN方法的优越性能。 展开更多
关键词 超分辨率 图像重建 深度卷积神经网络 级联 深度边缘滤波器
在线阅读 下载PDF
基于汇聚级联卷积神经网络的旋转人脸检测方法 被引量:2
13
作者 齐悦 董云云 王溢琴 《红外与激光工程》 EI CSCD 北大核心 2022年第12期379-386,共8页
针对大规模姿态变化和大角度人脸平面旋转(Rotation-in-Plane,RIP)等复杂条件下,多尺度旋转人脸检测精度低的问题,提出了一种基于汇聚级联卷积神经网络(Convolutional Neural Networks,CNN)的旋转人脸检测方法。采用由粗到精的级联策略... 针对大规模姿态变化和大角度人脸平面旋转(Rotation-in-Plane,RIP)等复杂条件下,多尺度旋转人脸检测精度低的问题,提出了一种基于汇聚级联卷积神经网络(Convolutional Neural Networks,CNN)的旋转人脸检测方法。采用由粗到精的级联策略,在主网络SSD的多个特征层上汇聚级联了多个浅层的卷积神经网络,逐步完成人脸/非人脸检测、人脸边界框位置更新和人脸RIP角度估计。该方法在Rotate FDDB和Rotate Sub-WIDER FACE数据集上取得了较好的检测效果。在Rotate SubWIDER FACE数据集出现100次误报时的检测精度为87.1%,速度为45FPS,证明该方法可在低时间损耗下完成精确的旋转人脸检测。 展开更多
关键词 旋转人脸检测 汇聚级联 卷积神经网络 尺度变换 平面旋转
在线阅读 下载PDF
基于级联卷积神经网络的服饰关键点定位算法 被引量:6
14
作者 李锵 姚麟倩 关欣 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第3期229-236,共8页
随着深度学习的发展,使用深度卷积神经网络进行关键点定位受到了广泛关注.虽然在人体姿态、人脸识别等多个方面的关键点定位技术已经获得了长足的发展,但是应用于服饰的关键点定位由于其图像背景以及姿态等的多变性依然面临很大的挑战.... 随着深度学习的发展,使用深度卷积神经网络进行关键点定位受到了广泛关注.虽然在人体姿态、人脸识别等多个方面的关键点定位技术已经获得了长足的发展,但是应用于服饰的关键点定位由于其图像背景以及姿态等的多变性依然面临很大的挑战.服饰关键点定位技术在电商以及时尚搭配等方面有很大应用价值,本文将关键点定位应用于时尚领域,提出一种基于级联卷积神经网络的服饰关键点定位算法.该算法的目的是通过级联的两级卷积神经网络,实现对服饰关键点的初步定位以及对困难关键点的定位调整.算法的第1级以深度残差网络作为特征提取网络,在特征金字塔结构中引入空洞卷积,解决高层特征图感受野大但是空间分辨率低的问题,从而保留更多图像底层细节信息,实现对关键点的初步定位;第2级将第1级网络得到的定位结果作为关键点之间的结构先验,结合沙漏网络提取多尺度特征,对困难关键点进行精细调整,进一步提高定位精度.实验选用2018Fashion AI服饰关键点定位数据集进行训练和测试,将该数据集中对服饰关键点定位的平均归一化误差结果降低到3.56%,充分验证了算法的有效性.与几种常见关键点定位算法进行对比,本文算法在服饰关键点定位任务中取得最好效果,尤其是提高了对困难关键点的定位精度. 展开更多
关键词 级联卷积神经网络 空洞卷积 沙漏网络 关键点定位
在线阅读 下载PDF
基于层间融合的神经网络访存密集型层加速 被引量:3
15
作者 杨灿 王重熙 章隆兵 《高技术通讯》 CAS 2023年第8期823-835,共13页
近年来,随着深度神经网络在各领域的广泛应用,针对不同的应用场景,都需要对神经网络模型进行训练以获得更优的参数,于是对训练速度的需求不断提升。然而,现有的研究通常只关注了计算密集型层的加速,忽略了访存密集型层的加速。访存密集... 近年来,随着深度神经网络在各领域的广泛应用,针对不同的应用场景,都需要对神经网络模型进行训练以获得更优的参数,于是对训练速度的需求不断提升。然而,现有的研究通常只关注了计算密集型层的加速,忽略了访存密集型层的加速。访存密集型层的操作主要由访存带宽决定执行效率,单独提升运算速度对性能影响不大。本文从执行顺序的角度出发,提出了将访存密集型层与其前后的计算密集型层融合为一个新层执行的方式,将访存密集型层的操作作为对融合新层中输入数据的前处理或输出数据的后处理进行,大幅减少了访存密集型层在训练过程中对片外内存的访问,提升了性能;并针对该融合执行方案,设计实现了一个面向训练的加速器,采用了暂存前处理结果、后处理操作与计算密集型层操作并行执行的优化策略,进一步提升了融合新层的训练性能。实验结果显示,在面积增加6.4%、功耗增加10.3%的开销下,训练的前向阶段、反向阶段的性能分别实现了67.7%、77.6%的提升。 展开更多
关键词 神经网络 训练 加速器 卷积神经网络(CNN) 访存密集型 批归一化(BN)层
在线阅读 下载PDF
卷积神经网络在驾驶员姿态估计上的应用 被引量:5
16
作者 陈仁文 袁婷婷 +1 位作者 黄文斌 张宇翔 《光学精密工程》 EI CAS CSCD 北大核心 2021年第4期813-821,共9页
为了实现对驾驶员的驾驶姿态估计,采集并构建了包含26名驾驶人员的姿态估计数据集,提出了一种轻量型卷积神经网络,用于对驾驶姿态的高效识别。首先,通过数学建模将驾驶员的姿态识别问题转化为寻找损失函数最小时关节点的预测值置信图与... 为了实现对驾驶员的驾驶姿态估计,采集并构建了包含26名驾驶人员的姿态估计数据集,提出了一种轻量型卷积神经网络,用于对驾驶姿态的高效识别。首先,通过数学建模将驾驶员的姿态识别问题转化为寻找损失函数最小时关节点的预测值置信图与真值置信图的映射函数。以Hourglass模块为每阶段的骨干结构,残差块为基本组成单元,使用批量归一化和激活函数,构建全卷积神经网络。为了利用原始图片信息和基础上下文信息,使用多特征聚合的两级级联结构,第一阶段的粗略预测图指导预测后续阶段。通过使用多个损失函数,让网络模型学习到更加深入和精确的表示。通过对比实验,验证了模型的可行性,级联网络结构和多损失函数策略对模型预测精度提升3.84%。实验结果表明,本文所提出的网络结构计算量和参数量远低于其他人体姿态估计模型,模型参数量仅0.7 M,且平均预测精度达到了95.74%,可以在车载端实现驾驶姿态的实时检测。 展开更多
关键词 机器视觉 卷积神经网络 驾驶员姿态估计 级联结构
在线阅读 下载PDF
一种基于级联神经网络的飞机检测方法 被引量:6
17
作者 王晓林 苏松志 +2 位作者 刘晓颖 蔡国榕 李绍滋 《智能系统学报》 CSCD 北大核心 2020年第4期697-704,共8页
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模... 由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。 展开更多
关键词 飞机检测 遥感图像 级联 深度学习 卷积神经网络 两阶段 由粗到细 嵌入式设备
在线阅读 下载PDF
基于卷积神经网络的左心室超声图像特征点定位 被引量:2
18
作者 周玉金 王晓东 +2 位作者 张力戈 朱锴 姚宇 《计算机应用》 CSCD 北大核心 2019年第4期1201-1207,共7页
针对传统级联卷积神经网络(CNN)在左心室超声图像中定位准确度较低的问题,提出一种融合更快速区域卷积神经网络(Faster-RCNN)模型提取区域的级联卷积神经网络,实现对超声图像中左心室心内膜和心外膜轮廓特征点的定位。首先,采用两级级... 针对传统级联卷积神经网络(CNN)在左心室超声图像中定位准确度较低的问题,提出一种融合更快速区域卷积神经网络(Faster-RCNN)模型提取区域的级联卷积神经网络,实现对超声图像中左心室心内膜和心外膜轮廓特征点的定位。首先,采用两级级联的方式改进传统级联卷积神经网络的网络结构,第一级网络利用一个改进的卷积网络粗略定位左心室心内膜和心外膜联合的特征点,第二级网络使用四个改进的卷积网络分别对心内膜特征点和心外膜特征点进行位置微调,之后定位输出左心室心内膜和心外膜联合的轮廓特征点位置;然后,将改进的级联卷积神经网络与目标区域提取融合,即利用Faster-RCNN模型提取包含左心室的目标区域并将目标区域送入改进的级联卷积神经网络;最后,由粗到细对左心室轮廓特征点进行定位。实验结果表明,与传统级联卷积神经网络相比,所提方法在左心室超声图像上的定位效果更好,更逼近真实值,在均方根误差的评价标准下,特征点定位准确度提升了32.6个百分点。 展开更多
关键词 超声心动图 左心室 特征点定位 卷积神经网络 级联卷积神经网络
在线阅读 下载PDF
基于改进的深度卷积神经网络的人脸疲劳检测 被引量:17
19
作者 冯文文 曹银杰 +1 位作者 李晓琳 胡卫生 《科学技术与工程》 北大核心 2020年第14期5680-5687,共8页
针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检... 针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。 展开更多
关键词 疲劳检测 含有方向的梯度直方图和级联分类器(HOG+SVM) 级联回归(ERT)算法 深度学习 卷积神经网络 中心损失
在线阅读 下载PDF
改进的Libra区域卷积神经网络的脑动脉狭窄影像学检测算法 被引量:1
20
作者 刘汉卿 康晓东 +4 位作者 张福青 赵秀圆 杨靖怡 王笑天 李梦凡 《计算机应用》 CSCD 北大核心 2022年第9期2909-2916,共8页
针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-... 针对断层面上血管的多形性和检测过程中出现的采样不均衡的问题,提出一种改进的Libra区域卷积神经网络(R-CNN)的脑动脉狭窄影像学检测算法,用于检测计算机断层扫描血管造影(CTA)图像的颈内动脉和椎动脉狭窄。首先,在目标检测网络LibraR-CNN中以ResNet50为骨干网络,并分别在骨干网络的3、4、5阶段引入可变卷积网络(DCN),通过学习偏移量提取血管在不同断层面的形态特征;然后,将从骨干网络中提取的特征图输入至引入非局部神经网络(Non-localNN)的平衡特征金字塔(BFP)中进行更深度的特征融合;最后,将融合后的特征图输入至级联检测器,并通过提高交并比(IoU)阈值优化最终检测结果。实验结果表明,改进的LibraR-CNN检测算法相比Libra R-CNN算法,在脑动脉CTA数据集中平均准确率(AP)、AP_(50)、AP_(75)和AP_(S)分别提升了4.3、1.3、6.9和4.0个百分点;在公开的结肠息肉CT数据集中,AP、AP_(50)、AP_(75)和AP_(S)分别提升了6.6、3.6、13.0和6.4个百分点。通过在LibraR-CNN的骨干网络中加入DCN、Non-localNN和级联检测器,进一步融合特征从而学习脑动脉血管结构的语义信息,使得狭窄区域检测结果更精确,且改进算法在不同的检测任务中具有泛化能力。 展开更多
关键词 Libra区域卷积神经网络 可变卷积网络 非局部神经网络 级联检测器 脑动脉狭窄
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部