针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行...针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。展开更多
为加快电力系统优化潮流(optimal power flow,OPF)问题的求解,提出了利用凝聚函数法代理非线性不等式约束的优化潮流算法。鉴于优化潮流的数学模型中包括了大量的非线性不等式约束条件,尤其在计算大规模电力系统优化潮流时,对非线性不...为加快电力系统优化潮流(optimal power flow,OPF)问题的求解,提出了利用凝聚函数法代理非线性不等式约束的优化潮流算法。鉴于优化潮流的数学模型中包括了大量的非线性不等式约束条件,尤其在计算大规模电力系统优化潮流时,对非线性不等式约束条件的处理耗费了大量的计算时间。文中将多个非线性不等式约束用一个凝聚函数代替,极大地减少了大规模电力系统优化潮流计算矩阵的维数,然后利用内点法进行求解。对IEEE大规模测试系统进行仿真,结果表明该混合算法具有收敛速度快、迭代迅速的优点。展开更多
文摘针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。
文摘为加快电力系统优化潮流(optimal power flow,OPF)问题的求解,提出了利用凝聚函数法代理非线性不等式约束的优化潮流算法。鉴于优化潮流的数学模型中包括了大量的非线性不等式约束条件,尤其在计算大规模电力系统优化潮流时,对非线性不等式约束条件的处理耗费了大量的计算时间。文中将多个非线性不等式约束用一个凝聚函数代替,极大地减少了大规模电力系统优化潮流计算矩阵的维数,然后利用内点法进行求解。对IEEE大规模测试系统进行仿真,结果表明该混合算法具有收敛速度快、迭代迅速的优点。