期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
针对超高密度磁存储磁化跃迁噪声的约束编码
1
作者 罗可 李桅 +6 位作者 蹇雨根 高宏宇 张克政 廖彦哲 吴宇飞 陈进才 卢萍 《电子学报》 北大核心 2025年第2期483-492,共10页
随着磁存储记录密度的提高,记录位间距减小,磁化跃迁噪声显著提高,由此极大地影响回读信号质量.为了降低超高密度磁存储系统记录图案磁化跃迁噪声的干扰,本文分析研究了磁化跃迁噪声对回读信号质量的影响,提出了限制连续跃迁的最大跃迁... 随着磁存储记录密度的提高,记录位间距减小,磁化跃迁噪声显著提高,由此极大地影响回读信号质量.为了降低超高密度磁存储系统记录图案磁化跃迁噪声的干扰,本文分析研究了磁化跃迁噪声对回读信号质量的影响,提出了限制连续跃迁的最大跃迁游程长度受限(Maximum Transition Run,MTR)约束编码MTR(j=1),与允许连续跃迁的约束编码MTR(j=2)和MTR(j=3)相比,可有效抑制磁化跃迁噪声.通过实验测试了回读信号的检测效果,当信噪比为12 dB时,与MTR(j=2)、MTR(j=3)相比,MTR(j=1)相对误码率分别降低了约30%和60%,证实了限制连续跃迁约束编码MTR(j=1)的数据检测可靠性更高. 展开更多
关键词 超高密度磁存储 磁化跃迁噪声 约束编码 读写过程 均衡检测
在线阅读 下载PDF
基于局部约束编码的稀疏保持投影降维识别方法研究 被引量:1
2
作者 张静 杨智勇 +2 位作者 王国宏 林洪文 刘晓娣 《电子学报》 EI CAS CSCD 北大核心 2016年第3期658-664,共7页
稀疏表示技术的引入可有效解决降维处理对图参数的依赖,但这类降维方法不能同时兼顾稀疏重构和样本数据的邻近性问题.针对该问题,本文提出了一种基于局部约束编码的稀疏保持投影降维识别方法.通过稀疏表示分类模型构建了图边权矩阵,引... 稀疏表示技术的引入可有效解决降维处理对图参数的依赖,但这类降维方法不能同时兼顾稀疏重构和样本数据的邻近性问题.针对该问题,本文提出了一种基于局部约束编码的稀疏保持投影降维识别方法.通过稀疏表示分类模型构建了图边权矩阵,引入局部约束因子设计了降维投影模型,推导降维求解过程,分析了本文方法与SPP(Sparse Preserving Projections)和SLPP(Soft Locality Preserving Projections)方法之间的共性和区别,最后给出了识别算法流程.采用人脸图像数据集和高分辨SAR(Synthetic Aperture Radar)图像数据集对算法的有效性进行仿真验证,由于考虑了数据间的邻近性,本文方法较传统方法可获得更好的识别性能. 展开更多
关键词 目标识别 维数约简 稀疏表示 局部约束编码
在线阅读 下载PDF
非负局部约束线性编码图像分类算法 被引量:17
3
作者 刘培娜 刘国军 +2 位作者 郭茂祖 刘扬 李盼 《自动化学报》 EI CSCD 北大核心 2015年第7期1235-1243,共9页
基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻... 基于特征提取的图像分类算法的核心问题是如何对特征进行有效编码.局部约束线性编码(Locality-constrained linear coding,LLC)因其良好的特征重构性与局部平滑稀疏性,已取得了很好的分类性能.然而,LLC编码的分类性能对编码过程中的近邻数k的大小比较敏感,随着k的增大,编码中的某些负值元素与正值元素的差值绝对值也可能增大,这使得LLC越来越不稳定.本文通过在LLC优化模型的目标方程中引入非负约束,提出了一种新型编码方式,称为非负局部约束线性编码(Non-negative locality-constrained linear coding,NNLLC).该模型一般采取迭代优化算法进行求解,但其计算复杂度较大.因此,本文提出两种近似非负编码算法,其编码速度与LLC一样快速.实验结果表明,在多个广泛使用的图像数据集上,相比于LLC,NNLLC编码方式不仅在分类精确率上提高了近1%~4%,而且对k的选取具有更强的鲁棒性. 展开更多
关键词 局部约束线性编码 非负约束 空间金字塔匹配 图像分类
在线阅读 下载PDF
结合空间上下文的局部约束线性特征编码 被引量:5
4
作者 李宗民 蒋迪 +1 位作者 刘玉杰 李华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第2期254-261,共8页
针对传统特征编码方法聚焦于在特征空间进行编码,忽略了图像内容的空间信息,导致图像表达不准确、分类精度较低的问题,提出一种在特征空间中以图像空间上下文信息为导向的局部特征编码方法.首先基于最近邻原则为每个局部特征点选择字典... 针对传统特征编码方法聚焦于在特征空间进行编码,忽略了图像内容的空间信息,导致图像表达不准确、分类精度较低的问题,提出一种在特征空间中以图像空间上下文信息为导向的局部特征编码方法.首先基于最近邻原则为每个局部特征点选择字典中心作为向量基;然后采用探测局部特征的相邻特征点方法建立图像空间上下文约束,并将其用于特征相似性判别;再根据预设阈值来更新向量基,将其用于重构特征;最后将图像的稀疏向量用于分类器进行图像分类.实验结果表明,与同类方法相比,该方法能显著地提高分类精度,更利于图像分类. 展开更多
关键词 图像表达 图像分类 局部约束线性特征编码 上下文空间
在线阅读 下载PDF
一种编码约束的医学图像分割方法 被引量:1
5
作者 杨红菊 牛俊峰 陈庚峰 《小型微型计算机系统》 CSCD 北大核心 2022年第2期349-354,共6页
深度学习的优势在于其具有深层次的特征提取结构,而随着层数的增加以及激活函数的影响往往会导致其编码能力下降.基于此本文提出了一种基于U-Net和FCN网络进行编码约束的方法,并应用到医学图像分割上.编码约束结构以U-Net和FCN全卷积网... 深度学习的优势在于其具有深层次的特征提取结构,而随着层数的增加以及激活函数的影响往往会导致其编码能力下降.基于此本文提出了一种基于U-Net和FCN网络进行编码约束的方法,并应用到医学图像分割上.编码约束结构以U-Net和FCN全卷积网络模型架构为主体,对网络最后一层使用Sigmoid激活函数的1×1卷积层进行特征约束,通过将特征值向0.5靠近预防Sigmoid激活函数产生的梯度消失问题,同时要求特征值不能集中在0.5附近,最终在保持特征区分度的前提下规范编码值,进而提升网络编码能力.本文在Finding lungs in CT二维肺部分割数据集和肝脏数据集上分别进行了实验,实验结果表明本文方法能够有效的预防梯度消失的同时提升全卷积网络特征的编码能力,进而能有效地提升分割性能. 展开更多
关键词 深度学习 医学图像分割 编码约束 激活函数
在线阅读 下载PDF
一种基于约束线性编码的图像分类改进算法
6
作者 胡广平 周华强 《科学技术与工程》 北大核心 2013年第28期8329-8332,共4页
针对图像分类中量化编码的问题,提出了一种简单而且高效编码方法,叫做局部约束线性编码(Locality-Constrained Linear Coding)算法;并将其应用在传统空间金字塔模型(Spatial Pyramid Matching)的向量量化(Vector Quantization)中。通过... 针对图像分类中量化编码的问题,提出了一种简单而且高效编码方法,叫做局部约束线性编码(Locality-Constrained Linear Coding)算法;并将其应用在传统空间金字塔模型(Spatial Pyramid Matching)的向量量化(Vector Quantization)中。通过使用局部约束,LLC先将图像描述子映射到它的局部坐标系统,然后再将这些映射后的坐标经过Max-pooling整合成最终的图像表示。传统的基于词袋模型(Bag-of-World)的空间金字塔需要使用非线性分类器才能获得较好的分类效果,而LLC通过使用线性分类器获得了比传统非线性SPM更好的分类效果。 展开更多
关键词 图像分类 局部约束线性编码 向量量化
在线阅读 下载PDF
基于光流约束自编码器的动作识别 被引量:5
7
作者 李亚玮 金立左 +1 位作者 孙长银 崔桐 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期691-696,共6页
为了改进特征学习在提取目标运动方向及运动幅度等方面的能力,提高动作识别精度,提出一种基于光流约束自编码器的动作特征学习算法.该算法是一种基于单层正则化自编码器的无监督特征学习算法,使用神经网络重构视频像素并将对应的运动光... 为了改进特征学习在提取目标运动方向及运动幅度等方面的能力,提高动作识别精度,提出一种基于光流约束自编码器的动作特征学习算法.该算法是一种基于单层正则化自编码器的无监督特征学习算法,使用神经网络重构视频像素并将对应的运动光流作为正则化项.该神经网络在学习动作外观信息的同时能够编码物体的运动信息,生成联合编码动作特征.在多个标准动作数据集上的实验结果表明,光流约束自编码器能有效提取目标的运动部分,增加动作特征的判别能力,在相同的动作识别框架下该算法超越了经典的单层动作特征学习算法. 展开更多
关键词 动作识别 特征学习 正则化自编码 光流约束编码
在线阅读 下载PDF
非负约束自动编码器在电缆早期故障识别中的应用 被引量:25
8
作者 邵宝珠 李胜辉 +2 位作者 白雪 黄旭龙 杨晓梅 《电力系统保护与控制》 EI CSCD 北大核心 2019年第2期16-23,共8页
电缆早期故障的准确识别有助于降低电力系统的故障停电率和提高供电可靠性。在传统模式识别方法中,利于分类识别的有效特征通常难以选择,从而影响识别的准确度。鉴于此,将非负约束自动编码器(Non-negative Constrain Autoencoder, NCAE... 电缆早期故障的准确识别有助于降低电力系统的故障停电率和提高供电可靠性。在传统模式识别方法中,利于分类识别的有效特征通常难以选择,从而影响识别的准确度。鉴于此,将非负约束自动编码器(Non-negative Constrain Autoencoder, NCAE)堆叠形成的深度学习(Deep learning, DL)网络应用于电缆早期故障识别中。为了提高DL网络的学习效率,首先对故障相电流进行平稳小波变换,提取出一些具有相关性、冗余性的统计量、能量熵和信息熵等作为初级特征,其次堆叠多个NCAE构建出DL网络,通过预训练和微调机制,从初级特征中获得更易于早期故障分类识别的有效特征,最后利用Softmax分类器从正常状态和其他扰动信号中识别出早期故障。利用电缆电流仿真数据进行实验,结果表明与传统模式识别方法相比,所提方法识别准确率更高。 展开更多
关键词 电缆早期故障识别 SWT变换 非负约束自动编码 深度学习网络
在线阅读 下载PDF
基于局域性约束线性编码的人体动作识别 被引量:1
9
作者 白琛 孙军华 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第6期1122-1127,共6页
针对动作特征类内差异较大,导致动作分类识别率较低的问题,以及当前算法在计算复杂度和扩展可识别动作类别方面的不足,提出一种基于局域性约束线性编码(LLC)的人体动作识别方法.算法将人体关节的位置、速度和加速度作为局部动作特征;采... 针对动作特征类内差异较大,导致动作分类识别率较低的问题,以及当前算法在计算复杂度和扩展可识别动作类别方面的不足,提出一种基于局域性约束线性编码(LLC)的人体动作识别方法.算法将人体关节的位置、速度和加速度作为局部动作特征;采用局域性约束线性编码对局部动作特征求解稀疏表达,从而减小特征的类内差异,增强区别力;由于编码方法具有解析解,方法处理视频速度可达760帧/s;词典由K均值法分别对每类数据学习得到的子词典组成,使算法在扩展可识别动作类别时无需全局优化.此外,为避免了词典较大情况下分类器的过拟合现象,利用词典元素类别对编码系数进行降维.在使用深度摄像机获得的MSR-Action3D数据库上对所提出的方法进行验证,取得了85.7%的识别率. 展开更多
关键词 动作识别 局域性约束线性编码 词典学习 时间金字塔匹配 深度图像
在线阅读 下载PDF
邻居匹配与局部约束线性编码的图像分类方法 被引量:2
10
作者 田广强 张岐山 《计算机工程与设计》 北大核心 2017年第8期2217-2221,2261,共6页
为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量... 为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量之间的欧氏距离,用其推断输入向量与码本中所有码值之间欧氏距离的上下边界,依据距离下边界判决条件跳过部分码值与输入向量的距离计算,依据距离上边界快速求解输入向量的近似近邻码值矩阵,依据LLC方法进行向量编码。图像分类实验结果表明,该方法的分类正确率高,编码耗时少。 展开更多
关键词 图像分类 局部约束线性编码 向量量化 码本 邻居匹配
在线阅读 下载PDF
基于无损约束降噪自动编码器的心电信号降噪 被引量:6
11
作者 李鑫 熊鹏 +2 位作者 张兵 刘秀玲 杜海曼 《计算机工程与设计》 北大核心 2020年第9期2401-2407,共7页
针对心电信号在采集和传输过程中受到各种噪声的干扰影响心电疾病诊断的问题,提出一种基于无损约束降噪自动编码器的心电信号降噪算法。通过构建深层神经网络来学习心电信号的深层特征,利用特征分离心电信号和噪声,实现对心电信号中常... 针对心电信号在采集和传输过程中受到各种噪声的干扰影响心电疾病诊断的问题,提出一种基于无损约束降噪自动编码器的心电信号降噪算法。通过构建深层神经网络来学习心电信号的深层特征,利用特征分离心电信号和噪声,实现对心电信号中常见的肌电干扰、基线漂移和电极干扰3种噪声的滤除。实验结果表明,该方法平均输出信噪比高于23.82 dB,平均均方根误差小于0.028。与已有的降噪算法相比,该方法的降噪效果更优,更适用于实际应用。 展开更多
关键词 心电信号 无损约束降噪自动编码 降噪 信噪比 均方根误差
在线阅读 下载PDF
黎曼核局部线性编码 被引量:1
12
作者 姜伟 毕婷婷 +1 位作者 李克秋 杨炳儒 《软件学报》 EI CSCD 北大核心 2015年第7期1812-1823,共12页
最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,... 最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,并成功地应用于视觉分类问题.首先,借助于最近所提出的黎曼核,把对称正定矩阵映射到再生核希尔伯特空间中,通过局部线性编码理论建立稀疏编码和黎曼字典学习数学模型;其次,结合凸优化方法,给出了黎曼核局部线性编码的字典学习算法;最后,构造一个迭代更新算法优化目标函数,并且利用最近邻分类器完成测试样本的鉴别.在3个视觉分类数据集上的实验结果表明,该算法在分类精度上获得了相当大的提升. 展开更多
关键词 黎曼流形 对称正定矩阵 切空间 局部约束线性编码 稀疏表示
在线阅读 下载PDF
基于深度学习和稀疏编码的图像超分辨率重建 被引量:4
13
作者 谭成兵 姚宏亮 詹林 《计算机应用与软件》 北大核心 2022年第12期219-226,共8页
针对基于深度神经网络的图像超分辨率重建技术训练时间长的问题,提出一种基于深度学习和稀疏编码的图像超分辨率重建算法。采用卷积神经网络学习低分辨率图像每一块的深度视觉特征,利用局部约束线性编码的局部平滑稀疏能力对深度特征进... 针对基于深度神经网络的图像超分辨率重建技术训练时间长的问题,提出一种基于深度学习和稀疏编码的图像超分辨率重建算法。采用卷积神经网络学习低分辨率图像每一块的深度视觉特征,利用局部约束线性编码的局部平滑稀疏能力对深度特征进行编码;利用字典学习技术学习低分辨率图像和高分辨率图像每一块之间的判别关系字典;通过低分辨率字典和低分辨率图像估计稀疏表示系数,利用该系数实现图像超分辨率的重建。实验结果表明,该算法在视觉效果和评价指标上均获得了较好的超分辨率效果,并且速度较快。 展开更多
关键词 深度神经网络 卷积神经网络 局部约束线性编码 字典学习 图像超分辨率 图像重建
在线阅读 下载PDF
基于DCVAE-ELM的立铣刀磨损状态识别方法
14
作者 杨超 李宏坤 +2 位作者 彭德锋 欧佳玉 王朝东 《振动.测试与诊断》 北大核心 2025年第4期831-837,852,共8页
在立铣刀铣削过程中,由于工件较硬、切削深度较大、采用摆线铣加工方式使刀具磨损较快、空刀段较多,无法准确识别刀具磨损状态。针对这种情况,提出了一种利用深度约束变分自编码器(deep-constrained variational auto-encoder,简称DCVAE... 在立铣刀铣削过程中,由于工件较硬、切削深度较大、采用摆线铣加工方式使刀具磨损较快、空刀段较多,无法准确识别刀具磨损状态。针对这种情况,提出了一种利用深度约束变分自编码器(deep-constrained variational auto-encoder,简称DCVAE)和极限学习机(extreme learning machine,简称ELM)的刀具磨损状态识别方法。首先,将电流有效值信号、加速度信号和声压信号进行融合,将其转化为三维彩色图像;其次,采用DCVAE模型对彩色图像中包含的数据进行降维处理,提取其中的隐藏特征信息,增加编码器以增强提取数据特征的能力,利用约束条件使特征分布进一步集中;然后,使用特征可视化技术直观表现刀具不同磨损状态的特征类聚;最后,采用极限学习机对特征进行分类识别,得到刀具磨损状态的识别准确率为95.07%。通过实验分析及模型对比表明,本研究方法抗干扰能力强、稳定性好,能够准确识别刀具磨损状态。 展开更多
关键词 立铣刀磨损 多信息融合 极限学习机 刀具磨损状态识别 深度约束变分自编码
在线阅读 下载PDF
基于Edge Boxes的大型车辆车标检测与识别 被引量:3
15
作者 李熙莹 吕硕 +2 位作者 江倩殷 袁敏贤 余志 《计算机工程与应用》 CSCD 北大核心 2018年第12期152-159,共8页
传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性... 传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性及实时性的需求。该方法首先根据车标在车辆中的空间位置关系初选车标候选区,然后利用Edge Boxes算法进行目标提取,进而将提取得到的目标送入利用线性约束编码构建的车标检测分类器和车标识别分类器进行训练与识别,得到车标检测与识别结果。对不同卡口的不同天气和光照条件下采集的4 480张图像(含50类大型车辆)进行实验,实验结果表明,在检测与识别性能以及时间消耗方面均优于传统方法,具有良好的实用前景。 展开更多
关键词 大型车辆 车标检测与识别 Edge BOXES 线性约束编码 车标定位分类器 车标识别分类器
在线阅读 下载PDF
基于时空图像分割和交互区域检测的人体动作识别方法 被引量:25
16
作者 张杰 吴剑章 +1 位作者 汤嘉立 范洪辉 《计算机应用研究》 CSCD 北大核心 2017年第1期302-305,320,共5页
针对现有人体动作识别方法没有考虑到非人体目标的作用,提出一种基于时空图像分割和目标交互区域检测的人体动作识别方法。在视频流中检测出人体轮廓,并将其进行时空图像分段形成关键段区域;然后,扩展分段使其包含与人体交互的非人体目... 针对现有人体动作识别方法没有考虑到非人体目标的作用,提出一种基于时空图像分割和目标交互区域检测的人体动作识别方法。在视频流中检测出人体轮廓,并将其进行时空图像分段形成关键段区域;然后,扩展分段使其包含与人体交互的非人体目标,通过时空梯度方向直方图(HOG)和光流场方向直方图(HOF)描述符来表示关键段的静态和动态特征,并通过K-均值算法构建成码书,同时采用局部约束线性编码(LLC)技术来优化码书;最后采用非线性支持向量机(SVM)对特征进行学习并进行动作识别。实验结果表明,与现有基于兴趣点的方法相比,该方案获得了较高的动作识别率。 展开更多
关键词 人体动作识别 时空图像分割 交互区域 局部约束线性编码 支持向量机
在线阅读 下载PDF
基于LLC与GIST特征的静态人体行为分类 被引量:6
17
作者 王恩德 刘巧英 李勇 《计算机工程》 CAS CSCD 北大核心 2018年第8期268-272,278,共6页
针对静态图像人体行为识别问题,提出一种融合局部约束线性编码(LLC)和全局特征描述子的方法。该方法对图像进行密集采样,提取每个子区域的SIFT特征,利用LLC方法对提取的密集SIFT特征进行编码和池化。为了加入空间信息,采用空间金字塔的... 针对静态图像人体行为识别问题,提出一种融合局部约束线性编码(LLC)和全局特征描述子的方法。该方法对图像进行密集采样,提取每个子区域的SIFT特征,利用LLC方法对提取的密集SIFT特征进行编码和池化。为了加入空间信息,采用空间金字塔的思想,获得具有空间位置信息的LLC池化特征。将LLC池化特征串联通用搜索树(GIST)特征作为图像的最终描述,使用核函数为直方图交叉核函数的支持向量机进行分类。实验结果表明,与利用LLC、空间金字塔匹配特征和GIST特征进行识别的方法相比,该方法识别效果较好。 展开更多
关键词 行为识别 全局特征描述子 局部约束线性编码 空间金字塔匹配 最大池化
在线阅读 下载PDF
基于RGB-D图像核描述子的物体识别方法 被引量:3
18
作者 骆健 蒋旻 《计算机应用》 CSCD 北大核心 2017年第1期255-261,共7页
针对传统的颜色-深度(RGB-D)图像物体识别的方法所存在的图像特征学习不全面、特征编码鲁棒性不够等问题,提出了基于核描述子局部约束线性编码(KD-LLC)的RGB-D图像物体识别方法。首先,在图像块间匹配核函数基础上,应用核主成分分析法提... 针对传统的颜色-深度(RGB-D)图像物体识别的方法所存在的图像特征学习不全面、特征编码鲁棒性不够等问题,提出了基于核描述子局部约束线性编码(KD-LLC)的RGB-D图像物体识别方法。首先,在图像块间匹配核函数基础上,应用核主成分分析法提取RGB-D图像的3D形状、尺寸、边缘、颜色等多个互补性核描述子;然后,分别对它们进行LLC编码及空间池化处理以形成相应的图像编码向量;最后,把这些图像编码向量融合成具有鲁棒性、区分性的图像表示。基于RGB-D数据集的仿真实验结果表明,作为一种基于人工设计特征的RGB-D图像物体识别方法,由于所提算法综合利用深度图像和RGB图像的多方面特征,而且对传统深度核描述子的采样点选取和紧凑基向量的计算这两方面进行了改进,使得物体类别识别率达到86.8%,实体识别率达到92.7%,比其他同类方法具有更高的识别准确率。 展开更多
关键词 RGB-D图像 物体识别 局部约束线性编码 核描述子 空间池化
在线阅读 下载PDF
基于改进离散花授粉算法的继电保护定值优化方法的研究 被引量:11
19
作者 焦飞 闫冬 +3 位作者 李仲青 窦竟铭 查雯婷 梁营玉 《智慧电力》 北大核心 2021年第5期48-55,共8页
提出一种基于改进花授粉算法的继电保护定值优化方法,利用约束区间编码,以整定时间最短和灵敏度最优为目标,以满足继电保护选择性、灵敏性、速动性、可靠性要求为约束,寻找得到使电力系统稳定运行的最优整定结果。通过与传统的继电保护... 提出一种基于改进花授粉算法的继电保护定值优化方法,利用约束区间编码,以整定时间最短和灵敏度最优为目标,以满足继电保护选择性、灵敏性、速动性、可靠性要求为约束,寻找得到使电力系统稳定运行的最优整定结果。通过与传统的继电保护整定方法和基于遗传算法的整定值寻优方法进行比较,结果表明改进花授粉算法收敛速度快,寻优效率高,适用于继电保护全局优化整定。 展开更多
关键词 继电保护 定值优化 改进离散花授粉算法 区间约束编码
在线阅读 下载PDF
基于改进遗传算法的继电保护定值优化的研究 被引量:11
20
作者 赵建立 范春菊 +1 位作者 乐全明 邓孟华 《继电器》 CSCD 北大核心 2007年第22期6-9,共4页
如何获得一套满足用户期望的、保证整体性能最优的保护定值是当今继电保护整定计算中的研究热点之一。针对不同线路的定时限保护对于配合关系的重要性程度不同,以及保护延时段对于不同约束条件的侧重不同,提出了基于改进遗传算法的继电... 如何获得一套满足用户期望的、保证整体性能最优的保护定值是当今继电保护整定计算中的研究热点之一。针对不同线路的定时限保护对于配合关系的重要性程度不同,以及保护延时段对于不同约束条件的侧重不同,提出了基于改进遗传算法的继电保护定值优化的算法。利用基于自适应的小生境遗传算法,采用约束区间配合点编码的方法对全电网相间距离保护的II段整定计算的优化进行了初步探索,并结合算例进行了算法的验证。 展开更多
关键词 定值优化 约束区间配合点编码 遗传算法 约束条件权重
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部