针对基于RSSI(Received Signal Strength Indicator)的无线传感网络定位算法精度不高的问题,提出一种负约束条件下的似然估计定位算法。当未知节点在参考节点的通信范围之外时,引入负约束条件来提高定位精度。主要工作可分为三部分:第一...针对基于RSSI(Received Signal Strength Indicator)的无线传感网络定位算法精度不高的问题,提出一种负约束条件下的似然估计定位算法。当未知节点在参考节点的通信范围之外时,引入负约束条件来提高定位精度。主要工作可分为三部分:第一,根据RSSI值测量参考节点与未知节点之间的距离。第二,根据参考节点与未知节点通信关系建立正约束和负约束条件下的似然估计函数。第三,利用粒子群优化算法找到未知节点的最佳位置。仿真结果表明,引入负约束条件可以提高定位精度,且优于传统的定位算法。展开更多
针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此...针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此基础上定义其先验概率;结合邻域像素类属性的后验概率和先验概率,定义噪声平滑因子,以提高算法的抗噪性;在参数求解过程中,分别采用可逆跳变马尔可夫链蒙特卡罗(RJMCMC,reversible jump Markov chain Monte Carlo)方法和最大似然(ML,maximum likelihood)方法估计类属数和模型参数;最后以最小化噪声平滑因子为准则获取最终分割结果。为了验证提出的分割方法,分别对模拟图像和全色遥感图像进行了可变类分割实验。实验结果表明提出方法的可行性和有效性。展开更多
文摘针对基于RSSI(Received Signal Strength Indicator)的无线传感网络定位算法精度不高的问题,提出一种负约束条件下的似然估计定位算法。当未知节点在参考节点的通信范围之外时,引入负约束条件来提高定位精度。主要工作可分为三部分:第一,根据RSSI值测量参考节点与未知节点之间的距离。第二,根据参考节点与未知节点通信关系建立正约束和负约束条件下的似然估计函数。第三,利用粒子群优化算法找到未知节点的最佳位置。仿真结果表明,引入负约束条件可以提高定位精度,且优于传统的定位算法。