期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于导向矢量约束的恒模盲波束形成算法 被引量:5
1
作者 刘可 钱华明 马俊达 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第9期151-156,共6页
针对阵列信号波达角(direction of arrival,DOA)先验信息已知的情况,利用信号的恒模特性,在卡尔曼滤波(Kalman filter,KF)结构下,提出一种附加阵列导向矢量约束的自适应波束形成算法.对约束情况下的卡尔曼滤波目标函数运用拉格朗日乘子... 针对阵列信号波达角(direction of arrival,DOA)先验信息已知的情况,利用信号的恒模特性,在卡尔曼滤波(Kalman filter,KF)结构下,提出一种附加阵列导向矢量约束的自适应波束形成算法.对约束情况下的卡尔曼滤波目标函数运用拉格朗日乘子法,求得约束条件下的最优估计表达式,并将其推广到无迹卡尔曼滤波(unscented Kalman filter,UKF)算法中,通过约束迭代算法对阵列估计信号的导向角施加约束,实现约束UKF自适应波束形成算法的最优权值分配.仿真过程中,用所提算法与约束恒模迭代最小二乘算法和约束最小方差迭代最小二乘算法作对比,表明表明,该算法在收敛速度、信噪比、稳健性、跟踪性能方面具有较好的性能. 展开更多
关键词 信号处理 自适应滤波 无迹卡尔曼滤波 波束形成 约束优化技术
在线阅读 下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
2
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部