期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于全局特征增强的无监督红外行人重识别
1
作者 王晓红 孟杨柳 《激光与红外》 北大核心 2025年第2期313-320,共8页
目前,无监督单模态行人重识别研究主要集中于可见光图像。随着新型红外摄像头的普及,无监督红外行人重识别也展现出其研究价值。由于红外图像对比度低、缺乏颜色纹理细节信息,因此全局信息对于红外行人重识别至关重要。本文设计了基于F-... 目前,无监督单模态行人重识别研究主要集中于可见光图像。随着新型红外摄像头的普及,无监督红外行人重识别也展现出其研究价值。由于红外图像对比度低、缺乏颜色纹理细节信息,因此全局信息对于红外行人重识别至关重要。本文设计了基于F-ResGAM的无监督红外行人重识别网络。该网络首先利用小波变换对图像进行预处理以增强特征提取能力,接着在resnet50网络结构中引入全局注意力机制(Global Attention Mechanism,GAM)关注更多的全局信息。此外,由于红外伪标签噪声较大,本文提出采用基于样本扩展的分组采样(Group Sampling based on Sample Expansion,GSSE)策略进一步优化伪标签生成,从而提升了模型的识别精度。实验结果表明,本文提出的优化方法有效提升了无监督红外行人重识别的精度,尤其是rank指标显著提升。 展开更多
关键词 无监督 红外行人重识别 GAM 小波变换 样本扩展的分组采样
在线阅读 下载PDF
基于跨模态近邻损失的可视-红外行人重识别
2
作者 赵三元 阿琪 高宇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期433-441,共9页
可视-红外跨模态行人重识别任务的目标是给定一个模态的特定人员图像,在其他不同模态摄像机所拍摄的图像集中进行检索,找出相同人员对应的图像。由于成像方式不同,不同模态的图像之间存在明显的模态差异。为此,从度量学习的角度出发,对... 可视-红外跨模态行人重识别任务的目标是给定一个模态的特定人员图像,在其他不同模态摄像机所拍摄的图像集中进行检索,找出相同人员对应的图像。由于成像方式不同,不同模态的图像之间存在明显的模态差异。为此,从度量学习的角度出发,对损失函数进行改进以获取具有更加辨别性的信息。对图像特征内聚性进行理论分析,并在此基础上提出一种基于内聚性分析和跨模态近邻损失函数的重识别方法,以加强不同模态样本的内聚性。将跨模态困难样本的相似性度量问题转化为跨模态最近邻样本对和同模态样本对的相似性度量,使得网络对模态内聚性的优化更加高效和稳定。对所提方法在全局特征表示的基线网络和部分特征表示的基线网络上进行实验验证结果表明:所提方法对可视-红外行人重识别的预测结果相较于基线方法,平均准确度最高可提升8.44%,证明了方法在不同网络架构中的通用性;同时,以较小的模型复杂度和较低的计算量为代价,实现了可靠的跨模态行人重识别结果。 展开更多
关键词 可视-红外行人重识别 度量学习 深度学习 跨模态学习 计算机视觉
在线阅读 下载PDF
基于全局多粒度池化的可见光红外行人重识别 被引量:4
3
作者 周航 黄春光 程海 《电子测量技术》 北大核心 2022年第1期122-128,共7页
可见光红外行人重新识别是一种跨模态检索的问题。由于可见光和红外图像模态差异较大,能够精确的匹配行人仍然具有很大的挑战。最近的研究表明,利用池化描述身体部位的局部特征以及人图像本身的全局特征,即使在身体部位缺失的情况下,也... 可见光红外行人重新识别是一种跨模态检索的问题。由于可见光和红外图像模态差异较大,能够精确的匹配行人仍然具有很大的挑战。最近的研究表明,利用池化描述身体部位的局部特征以及人图像本身的全局特征,即使在身体部位缺失的情况下,也能给出鲁棒的特征表示,但是简单的全局平均池化很难获取行人的细节特征。针对这个问题,提出一种新的全局多粒度池化的方法,利用全局平均池化和全局最大池化结合的方法,提取行人更多的背景和纹理信息。此外,传统的三元组损失在跨模态行人重识别上效果并不好。设计了一种新的跨模态三元损失,以优化类内和类间距离,并监督网络学习有区别的特征表示。通过实验证明了所提方法的有效性,并在RegDB和SYSU-MM01数据集上分别取得了88.01%Rank-1,79.26%mAP,和60.24%Rank-1,57.50%mAP的结果。 展开更多
关键词 全局多粒度池化 可见光红外行人重识别 困难跨模态三元损失
在线阅读 下载PDF
一种单阶段无监督可见光-红外跨模态行人重识别方法
4
作者 娄刃 和任强 +4 位作者 赵三元 郝昕 周跃琪 汪心渊 李方芳 《计算机科学》 CSCD 北大核心 2024年第S01期528-534,共7页
无监督“可见光-红外”跨模态行人重识别任务能够缓解智能监控场景中需要大量人工标注的问题。常见多阶段模型用于处理不同模态数据。文中提出了一种有效的单阶段无监督跨模态行人重识别的方法,设计了基于置信因子的聚类算法和图嵌入的... 无监督“可见光-红外”跨模态行人重识别任务能够缓解智能监控场景中需要大量人工标注的问题。常见多阶段模型用于处理不同模态数据。文中提出了一种有效的单阶段无监督跨模态行人重识别的方法,设计了基于置信因子的聚类算法和图嵌入的跨模态特征处理方法,分别用于解决无标签问题和跨模态问题。实验结果表明,相较于现有算法,所提方法在r=1时精度至少取得了7%的提高。 展开更多
关键词 跨模态学习 无监督行人重识别 可见光-红外行人重识别 无监督学习 跨模态特征处理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部