基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3...基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3轻量化特征提取网络,并使用深度可分离卷积减小模型尺寸,使其更易部署至CPU设备;其次,将最近邻插值上采样方式替换为CARAFE(Content-Aware ReAssembly of FEatures),明显提升了图像重建效果;最后使用EIOU Loss作为边界框损失函数改善模型回归性能。本文在采样后的LLVIP红外行人图像数据集上进行了测试:对于红外图像下的行人目标,本文在保持高检测精度(AP=95.4%)的同时,模型大小减少80.6%,参数量减少82.8%;在使用CPU平台进行推理时,推理速度提升43.3%,且检测多尺度目标的性能有所提升。以上两方面结果验证了算法的有效性。展开更多
针对基于单特征红外图像行人识别准确率低的问题,提出一种基于梯度方向直方图(HOG)、积分通道特征(ICF)和强度自适应特征(ISS)的多特征融合红外图像行人检测的新方法。首先,分别提取训练样本的HOG、积分通道和ISS特征,用主成分分析(PCA...针对基于单特征红外图像行人识别准确率低的问题,提出一种基于梯度方向直方图(HOG)、积分通道特征(ICF)和强度自适应特征(ISS)的多特征融合红外图像行人检测的新方法。首先,分别提取训练样本的HOG、积分通道和ISS特征,用主成分分析(PCA)算法对提取的ISS特征进行降维,然后通过并行加权特征融合方法把HOG、积分通道和降维后的ISS特征相融合,并用融合后的特征训练支持向量机(SVM)分类器,最后用训练好的SVM分类器进行行人识别检测。LSI Far Infrared Pedestrian Dataset红外行人图像数据库上的实验证明,基于多特征的红外图像行人检测方法明显优于经典的HOG和局部二值模式(LBP)单特征方法,提高了检测精度,降低了误检率。展开更多
文摘基于红外图像的行人识别是现代安防系统的重要组成部分。在计算资源受限场景,由于红外行人检测算法中模型尺寸的影响,检测精度与部署难度往往难以平衡。针对此问题,本文提出了一种基于YOLOv5s的轻量化目标检测算法:首先引入MobileNetv3轻量化特征提取网络,并使用深度可分离卷积减小模型尺寸,使其更易部署至CPU设备;其次,将最近邻插值上采样方式替换为CARAFE(Content-Aware ReAssembly of FEatures),明显提升了图像重建效果;最后使用EIOU Loss作为边界框损失函数改善模型回归性能。本文在采样后的LLVIP红外行人图像数据集上进行了测试:对于红外图像下的行人目标,本文在保持高检测精度(AP=95.4%)的同时,模型大小减少80.6%,参数量减少82.8%;在使用CPU平台进行推理时,推理速度提升43.3%,且检测多尺度目标的性能有所提升。以上两方面结果验证了算法的有效性。
文摘针对基于单特征红外图像行人识别准确率低的问题,提出一种基于梯度方向直方图(HOG)、积分通道特征(ICF)和强度自适应特征(ISS)的多特征融合红外图像行人检测的新方法。首先,分别提取训练样本的HOG、积分通道和ISS特征,用主成分分析(PCA)算法对提取的ISS特征进行降维,然后通过并行加权特征融合方法把HOG、积分通道和降维后的ISS特征相融合,并用融合后的特征训练支持向量机(SVM)分类器,最后用训练好的SVM分类器进行行人识别检测。LSI Far Infrared Pedestrian Dataset红外行人图像数据库上的实验证明,基于多特征的红外图像行人检测方法明显优于经典的HOG和局部二值模式(LBP)单特征方法,提高了检测精度,降低了误检率。