期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Kmeans和图像熵聚类的热红外目标检测算法 被引量:5
1
作者 王静雷 厉小润 《机电工程》 CAS 2012年第12期1490-1493,共4页
针对以海洋为背景的热红外图像目标检测存在的海洋海杂波的非平稳特性、非线性特性问题,以及目标背景相关性大而对比度小等问题,对两幅实拍红外船舰图像进行了实验,提出了一种快速有效的热红外目标检测算法。该算法采用表示图像灰度空... 针对以海洋为背景的热红外图像目标检测存在的海洋海杂波的非平稳特性、非线性特性问题,以及目标背景相关性大而对比度小等问题,对两幅实拍红外船舰图像进行了实验,提出了一种快速有效的热红外目标检测算法。该算法采用表示图像灰度空域分布状态不确定性量度的图像熵方法,利用滑窗方法遍历整幅图像,求得了局部熵图像,从而确定了目标的粗略位置;通过用最大类间差法将局部熵处理后图像进行了自适应的二值分割,将目标和背景最优化地分离,并且结合改进的Kmeans聚类算法,通过循环所有目标点找出了其在聚类图像中的聚类标识,结合所有该聚类的像素点,提取出了完整的目标及其轮廓。研究结果表明,该热红外目标检测算法速度快,性能良好,在将目标完整地提取出来的同时可以很好地保留目标的轮廓。 展开更多
关键词 Kmeans 局部熵 分割聚类 红外目标检测算法
在线阅读 下载PDF
基于YOLOv8的车载红外目标检测改进算法研究
2
作者 侯军 杨洁 邵凯青 《计量学报》 北大核心 2025年第2期167-176,共10页
针对车载红外图像检测中的目标相互遮挡和小尺度目标漏检问题,提出一种基于YOLOv8的车载红外目标检测改进算法(VITD-YOLO)。首先,在Neck网络中增加大尺寸特征网络预测层(S-layer),增强网络对于小目标的检测精度;其次,在Backbone网络中设... 针对车载红外图像检测中的目标相互遮挡和小尺度目标漏检问题,提出一种基于YOLOv8的车载红外目标检测改进算法(VITD-YOLO)。首先,在Neck网络中增加大尺寸特征网络预测层(S-layer),增强网络对于小目标的检测精度;其次,在Backbone网络中设计C2F-DA模块,利用offset轻量化结构增强模型对目标的局部特征感知能力,并结合3种不同尺度自注意力设计了动态卷积头检测模组(Dy-head),提高被遮挡和密集目标的定位和分类精度;最后,采用Focal-SIoU作为网络的损失函数,解决训练样本中行人车辆目标类别不均衡问题,并提高网络训练和推理能力。将该算法在FLIR红外数据集上测试,实验结果表明:VITD-YOLO具有良好的检测效果和鲁棒性,对小尺度目标检测精度更高;该算法的平均精度达到91.2%,比原算法提高了2.5%,召回率达到83.4%,比原算法提高3.2%。 展开更多
关键词 机器视觉 车载红外目标检测算法 YOLOv8 辅助驾驶 图像识别 C2F-DA Focal-SioU
在线阅读 下载PDF
An algorithm for moving target detection in IR image based on grayscale distribution and kernel function 被引量:6
3
作者 王鲁平 张路平 +1 位作者 赵明 李飚 《Journal of Central South University》 SCIE EI CAS 2014年第11期4270-4278,共9页
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de... A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms. 展开更多
关键词 moving target detection gray-weighted kernel function dynamic background
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部