A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating r...A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.展开更多
Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive a...Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive additive.The condensates were isolated by vacuum distillation under 5 kPa.The product was characterized by Fourier transform infrared(FT-IR) spectra,Raman spectra and nuclear magnetic resonance(NMR) spectra.The results indicate that the product is niobium ethoxide.Thermal properties of niobium ethoxide were analysed by TG/DTG.Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius-Clapeyron equation.The concentrations of impurity metallic elements in the sample were detected by ICP-MS.It is shown that the purity can reach 99.997%.The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.展开更多
Polyfunctional aziridine/polyester microcapsules as control-release waterborne cross-linker were synthesized by multiple emulsion-solvent evaporation method. The results show that,a lower surface free energy with shel...Polyfunctional aziridine/polyester microcapsules as control-release waterborne cross-linker were synthesized by multiple emulsion-solvent evaporation method. The results show that,a lower surface free energy with shell polyester is more favourable for the formation of microcapsules. Full encapsulating microcapsules are synthesized with the polyester with a surface free energy of 34.5 mJ/m2. Shell-to-core feeding mass ratio has a significant influence on the morphology and core content of the resulting microcapsules. Well defined spherical microcapsules with uniform shell thickness and core content at around 22% are produced at a shell-to-core mass ratio of 1:1. When 2.5% of colloid stabilizer is used,hollow spherical microcapsules are obtained. A high solvent evaporation rate results in wrinkling and porosity of the microcapsules,and an evaporation rate equivalent to solvent elimination in about 2 h provides a uniform rate of surface hardening. The characterization of the microcapsules by SEM and FTIR demonstrates that polyfunctional aziridine is encapsulated at the centre of the microcapsule. The microcapsules synthesized can be broken at a high shear rate.展开更多
Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydr...Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.展开更多
基金Project(708049) supported by the Important Item Cultivation Foundation of Scientific Innovation Project of Colleges and Universities of China
文摘A novel chelating resin with sulfonic group was synthesized by chemical modification of D401 resin with sulphonation reaction and characterized by FT-IR spectrometry. The adsorption properties of the novel chelating resin for Pb2+ were studied by batch adsorption, and the adsorption process was analyzed from thermodynamics and kinetics aspects. The adsorption mechanism of Pb2+ on the modified D401 chelating resin was discussed by FT-IR spectrometry. Experimental results show that in the Pb2+ concentration range of 200-400 mg/L, the adsorption capacities of the modified D401 chelating resin for Pb2+ increase by 77%-129%, and Langmuir isothermal adsorption model is more suitable for the equilibrium adsorption data. Adsorption is an endothermic process that runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best pH value under adsorption condition is 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the adsorption capacity remains stable after five consecutive adsorption-desorption cycles. The maximal static saturated adsorption capacity of the resin is 206 mg/g at 333 K in the Pb2+ concentration range of 200-400 mg/L. The modified D401 chelating resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution.
基金Project(2007AA03Z425) supported by the National Hi-tech Research and Development Program of ChinaProject(50404011) supported by the National Natural Science Foundation of China
文摘Niobium(V) ethoxide(Nb(OEt)5) was synthesized by electrochemical reaction of ethanol with niobium plate as the sacrificial anode,stainless steel as the cathode and tetraethylammonium chloride(TEAC) as the conductive additive.The condensates were isolated by vacuum distillation under 5 kPa.The product was characterized by Fourier transform infrared(FT-IR) spectra,Raman spectra and nuclear magnetic resonance(NMR) spectra.The results indicate that the product is niobium ethoxide.Thermal properties of niobium ethoxide were analysed by TG/DTG.Vapour pressure was calculated from the Langmuir equation and the enthalpy of vaporization was calculated from the vapour pressure-temperature data using the Clausius-Clapeyron equation.The concentrations of impurity metallic elements in the sample were detected by ICP-MS.It is shown that the purity can reach 99.997%.The volatility and purity of the niobium ethoxide ensure that it could be a good precursor for chemical vapor deposition and atomic layer deposition of niobium oxide layers.
基金Project(50903031) supported by the National Natural Science Foundation of ChinaProject(2009ZM0046) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(N9100240) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province, China
文摘Polyfunctional aziridine/polyester microcapsules as control-release waterborne cross-linker were synthesized by multiple emulsion-solvent evaporation method. The results show that,a lower surface free energy with shell polyester is more favourable for the formation of microcapsules. Full encapsulating microcapsules are synthesized with the polyester with a surface free energy of 34.5 mJ/m2. Shell-to-core feeding mass ratio has a significant influence on the morphology and core content of the resulting microcapsules. Well defined spherical microcapsules with uniform shell thickness and core content at around 22% are produced at a shell-to-core mass ratio of 1:1. When 2.5% of colloid stabilizer is used,hollow spherical microcapsules are obtained. A high solvent evaporation rate results in wrinkling and porosity of the microcapsules,and an evaporation rate equivalent to solvent elimination in about 2 h provides a uniform rate of surface hardening. The characterization of the microcapsules by SEM and FTIR demonstrates that polyfunctional aziridine is encapsulated at the centre of the microcapsule. The microcapsules synthesized can be broken at a high shear rate.
基金Project(50704036) supported by the National Natural Science Foundation of ChinaProject(08JJ3027) supported by the Natural Science Foundation of Hunan Province, China
文摘Magnesium oxysulfate (MgSO4·5Mg(OH)2·2H2O) flake powders with an average diameter of 2 ~tm and a thickness of 0.052 μm were prepared using magnesium sulfate and sodium hydroxide as raw materials by hydrothermal synthesis process. The composition, morphology and structural features of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that in the conditions of n(NaOH)/n(MgSO4) of 1.25, the dosage of w(Na3PO4) crystal additives of 1.0% w(MgSO4), stirring for 5 h at 180 ℃, the morphology of MgSO4·5Mg(OH)2·2H2O products is flaky and laminar, which is a kind of complex magnesium singlecrystal. The recycling of MgSO4 mother liquor was also investigated to make a full use of the materials and reduce disposal. The results prove that there is no adverse effect on the yield and purity of the products.