红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与...红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。展开更多
文摘红外与可见光图像融合(infrared and visible image fusion,IVIF)将红外图像与可见光图像的互补信息融合,提升图像质量以支持下游任务。鉴于深度学习在图像融合方面的优势,将其应用在IVIF领域已成为研究热点。对深度学习框架下的红外与可见光图像融合方法进行梳理分析,根据不同的融合框架将融合方法分为基于自编码器、卷积神经网络、生成对抗网络和变换器,并对比分析这四类方法的特点;综述了IVIF的主要应用领域、常用的6个数据集和8个评价指标,并在典型数据集上对各类主流IVIF方法进行定性和定量评估。最后,总结了现有IVIF方法的局限性,并展望了IVIF的未来研究方向。