期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于核主元分析与纠错输出编码SVM的齿轮故障诊断 被引量:6
1
作者 邱绵浩 王自营 +1 位作者 安钢 刘东利 《振动与冲击》 EI CSCD 北大核心 2009年第5期1-5,共5页
为提高齿轮故障诊断的准确率,提出了核主元分析和纠错输出编码支持向量机相结合的方法。首先采用基于核主元分析方法对原始样本向量进行预处理,实现对原始样本向量的降噪及冗余消除。然后采用基于纠错输出编码矩阵构造出若干个互不相关... 为提高齿轮故障诊断的准确率,提出了核主元分析和纠错输出编码支持向量机相结合的方法。首先采用基于核主元分析方法对原始样本向量进行预处理,实现对原始样本向量的降噪及冗余消除。然后采用基于纠错输出编码矩阵构造出若干个互不相关的子支持向量机,以提高分类模型的整体容错能力。最后,把经过核主元处理后的新向量作为纠错输出编码支持向量机的训练及测试样本,实现对不同故障状态齿轮的识别。结果表明,该方法能够提取更有效的分类样本向量,故障诊断效果更好。 展开更多
关键词 核主元分析 故障诊断 纠错输出编码支持向量机 齿轮
在线阅读 下载PDF
基于混淆矩阵的自适应纠错输出编码多类分类方法 被引量:11
2
作者 周进登 王晓丹 周红建 《系统工程与电子技术》 EI CSCD 北大核心 2012年第7期1518-1524,共7页
利用纠错输出编码(error-correcting output code,ECOC)作为分解框架,把多类问题转化为二类问题进行求解,是目前解决多类分类的有效手段之一。如何构造基于数据的分解框架是应用此类方法的重点。为此,提出一种自适应纠错输出编码构造方... 利用纠错输出编码(error-correcting output code,ECOC)作为分解框架,把多类问题转化为二类问题进行求解,是目前解决多类分类的有效手段之一。如何构造基于数据的分解框架是应用此类方法的重点。为此,提出一种自适应纠错输出编码构造方法,利用混淆矩阵计算多类问题中各类别的相关性,基于Fisher准则找出最有利于分类的类别组合,最后根据组合方案构建类别的二类划分并最终形成输出编码。实验中分别对UCI数据集和3种一维距离像数据集进行测试,通过与几种经典的编码方法比较,结果表明该编码方法可以显著提高分类器的性能和稳健性。 展开更多
关键词 模式识别 多类分类 纠错输出编码 混淆矩阵 FISHER准则
在线阅读 下载PDF
基于SVDD的层次纠错输出编码研究 被引量:3
3
作者 雷蕾 王晓丹 +1 位作者 罗玺 宋亚飞 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1916-1921,共6页
纠错输出编码能有效地将多类问题分解为一系列二类子问题进行求解,已受到众多机器学习研究者的关注。如何构建基于数据的编码矩阵是编码方法确定的关键。针对此问题,基于Fisher原理,提出一种基于支持向量数据描述(support vector domain... 纠错输出编码能有效地将多类问题分解为一系列二类子问题进行求解,已受到众多机器学习研究者的关注。如何构建基于数据的编码矩阵是编码方法确定的关键。针对此问题,基于Fisher原理,提出一种基于支持向量数据描述(support vector domain description,SVDD)的层次纠错输出编码构造方法(hierarchical error-correcting output codes,HECOC)。该方法首先采用SVDD计算各类别的可分程度,从而得到由不同子类构成的二叉树;然后分别对二叉树的各层结点进行编码并最终形成层次输出编码。在仿真实验中,对不同子类类群划分构成的基分类器的可分性进行了对比,结果表明,该编码方法能在保证分类精度的同时,提高基分类器之间的差异性和纠错输出编码的容错能力。 展开更多
关键词 多类分类 纠错输出编码 类间可分性 支持向量数据描述
在线阅读 下载PDF
半监督层次纠错输出编码算法 被引量:3
4
作者 辛轶 郭躬德 陈黎飞 《小型微型计算机系统》 CSCD 北大核心 2010年第8期1659-1664,共6页
纠错输出编码是一种处理多类分类问题的有效方法,但它只能用于有监督的数据,而对大量未标签样本却无法利用.提出一种新颖的基于半监督技术的层次编码算法,对传统的纠错输出编码算法(ECOC)进行改造,拓展了编码的概念.在编码阶段,根据簇... 纠错输出编码是一种处理多类分类问题的有效方法,但它只能用于有监督的数据,而对大量未标签样本却无法利用.提出一种新颖的基于半监督技术的层次编码算法,对传统的纠错输出编码算法(ECOC)进行改造,拓展了编码的概念.在编码阶段,根据簇特征进行同类组合后再进行层次编码,从而在充分利用了无标签样本的同时,根据数据类分布的特点进行编码以提高算法精度.最后在化工产品有毒性预测数据集上的实验结果表明了本方法的可行性和有效性. 展开更多
关键词 纠错输出编码 半监督学习 层次编码 多类分类
在线阅读 下载PDF
基于最小二乘和纠错输出编码的多类分类 被引量:1
5
作者 王强 刘晓东 +1 位作者 高洁 米裕 《计算机工程与应用》 CSCD 2014年第7期190-193,234,共5页
多类分类是目标识别中必须面对的一个关键问题,现有分类器大都为二分器,无法满足对多类目标进行分类,为此,提出利用纠错输出编码方法对多类问题进行分解,即把多类问题转化成二类问题;同时讨论一种基于最小二乘法对二分器结果进行融合的... 多类分类是目标识别中必须面对的一个关键问题,现有分类器大都为二分器,无法满足对多类目标进行分类,为此,提出利用纠错输出编码方法对多类问题进行分解,即把多类问题转化成二类问题;同时讨论一种基于最小二乘法对二分器结果进行融合的策略。实验分别对UCI数据集和三种一维距离像数据集进行测试,结果表明与经典的多分类器相比,提出的多类分类策略有较高的分类正确率。 展开更多
关键词 模式识别 多类分类 纠错输出编码 最小二乘
在线阅读 下载PDF
基于纠错输出编码的支持向量机在语音识别中的应用 被引量:1
6
作者 刘晓峰 张雪英 《太原理工大学学报》 CAS 北大核心 2011年第1期34-37,共4页
利用纠错输出编码的矩阵编码构造出若干个无关的子支持向量机,用来改善分类模型的整体容错性能。使用了一对余、一对一、稠密型随机编码、稀疏型随机编码4种常用的纠错输出编码方法,用于训练集和测试集。实验结果显示,对于韩语非特定人... 利用纠错输出编码的矩阵编码构造出若干个无关的子支持向量机,用来改善分类模型的整体容错性能。使用了一对余、一对一、稠密型随机编码、稀疏型随机编码4种常用的纠错输出编码方法,用于训练集和测试集。实验结果显示,对于韩语非特定人小词汇量孤立词的语音识别,基于纠错输出编码的支持向量机比隐马尔科夫方法具有更高的识别率。其中,一对一编码是效果最好的。 展开更多
关键词 语音识别 支持向量机 纠错输出编码
在线阅读 下载PDF
基于纠错输出编码的人脸表情识别
7
作者 余棉水 朱岸青 解晓萌 《计算机工程与应用》 CSCD 2014年第3期155-159,共5页
多分类问题一直是模式识别领域的一个热点,提出了一种基于纠错输出编码和支持向量机的多分类器算法。根据通信编码理论设计纠错输出编码矩阵;按照该编码矩阵设计若干个互不相关的子支持向量机,根据编码原理将它们融合为一个多分类器。... 多分类问题一直是模式识别领域的一个热点,提出了一种基于纠错输出编码和支持向量机的多分类器算法。根据通信编码理论设计纠错输出编码矩阵;按照该编码矩阵设计若干个互不相关的子支持向量机,根据编码原理将它们融合为一个多分类器。为了验证本分类器的有效性,采用Gabor小波提取人脸表情特征,应用二元主成分(2DPCA)分析法对提取的特征进行降维处理,应用该分类器进行了人脸表情的识别。实验结果表明,提出的方法能有效提高人脸表情的识别率,并具有极好的鲁棒性。 展开更多
关键词 支持向量机 多分类器 纠错输出编码 GABOR小波
在线阅读 下载PDF
纠错输出编码的留一误差界估计
8
作者 薛爱军 王晓丹 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第1期132-141,共10页
纠错输出编码(ECOC)作为分解框架,将多类分类问题转化为二类分类问题,是解决多类分类问题的有效手段。为了提高ECOC的泛化性能,对ECOC基分类器的设计问题进行了研究。解决这一问题的关键是对ECOC的泛化性能进行估计。留一(LOO)误差作为... 纠错输出编码(ECOC)作为分解框架,将多类分类问题转化为二类分类问题,是解决多类分类问题的有效手段。为了提高ECOC的泛化性能,对ECOC基分类器的设计问题进行了研究。解决这一问题的关键是对ECOC的泛化性能进行估计。留一(LOO)误差作为泛化性能的无偏估计,研究了ECOC留一误差界的估计问题。先给出了ECOC留一误差的定义,基于此定义,再给出了基分类器为支持向量机(SVM),解码方法为线性损失函数解码时,ECOC留一误差的上界和下界。在人工数据集和UCI数据集上的实验表明,ECOC留一误差的上界可以指导基分类器的参数选择,通过基分类器设计可以提高ECOC的泛化性能。此外,ECOC的训练误差可以作为ECOC留一误差的下界,对ECOC留一误差下界的研究可以作为未来的研究方向。 展开更多
关键词 模式识别 多类分类 纠错输出编码(ECOC) 泛化性能(L00) 留一误差
在线阅读 下载PDF
基于三元纠错输出编码的偏标记学习算法 被引量:2
9
作者 周斌斌 张敏灵 刘胥影 《计算机科学与探索》 CSCD 北大核心 2018年第9期1444-1453,共10页
偏标记学习是一类重要的弱监督学习框架,在该框架下,每个训练样本与一组候选标记相关联,在候选标记集合中有且仅有一个是其真实标记。很明显,候选标记数目越多,偏标记学习难度越大。为了减少候选标记数目以降低偏标记学习难度,提出了一... 偏标记学习是一类重要的弱监督学习框架,在该框架下,每个训练样本与一组候选标记相关联,在候选标记集合中有且仅有一个是其真实标记。很明显,候选标记数目越多,偏标记学习难度越大。为了减少候选标记数目以降低偏标记学习难度,提出了一种基于三元纠错输出码的偏标记学习算法(PL-TECOC),该算法将偏标记学习问题转换为多个二类学习问题,并对学到的多个二类分类器进行最终集成。在构建二类训练数据时采用编码"0"来忽略相应标记,仅依据非"0"编码标记进行正负类的构造,以达到减少候选标记数目的目的。实验表明,与多个流行的偏标记学习算法相比,PL-TECOC在人工数据集和真实数据集上均取得了较好的分类性能。 展开更多
关键词 弱监督学习 消歧 纠错输出编码 偏标记学习
在线阅读 下载PDF
基于迭代延长纠错输出编码的微阵列数据多分类方法
10
作者 钟天云 刘昆宏 王备战 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期396-403,共8页
微阵列技术使快速大量检测基因成为可能,人们迫切需要利用该技术提高疾病诊断水平.因此,对微阵列数据的分析研究迅速发展,其中以数据多类分类研究尤为突出.但由于微阵列数据具有特征多、样本少的特点,使得传统统计学习方法分类效果欠佳... 微阵列技术使快速大量检测基因成为可能,人们迫切需要利用该技术提高疾病诊断水平.因此,对微阵列数据的分析研究迅速发展,其中以数据多类分类研究尤为突出.但由于微阵列数据具有特征多、样本少的特点,使得传统统计学习方法分类效果欠佳.为了针对微阵列数据特点解决多类分类问题,提出了一种迭代延长纠错输出编码(iterative extension error correct output coding,IE-ECOC)的算法.在几个特征子集上,配合与特征相关的数据复杂度,利用一种基于二叉树的编码方法生成一个列池,并提出一种择列策略构造编码矩阵;然后,依据迭代验证结果延长矩阵.对癌症基因微阵列进行分类实验,结果显示,IE-ECOC对特征多、样本少的数据具有针对性,且与一些经典的ECOC算法相比,可以产生较好的结果,IE-ECOE算法效果也在实验中得到了验证. 展开更多
关键词 微阵列 纠错输出编码 多分类算法 癌症基因 数据复杂度
在线阅读 下载PDF
基于神经网络的纠错输出编码方法研究 被引量:1
11
作者 周进登 周红建 +2 位作者 杨云 郭长华 胡洪宇 《电子学报》 EI CAS CSCD 北大核心 2013年第6期1114-1121,共8页
构造基于数据编码矩阵是目前利用纠错输出编码解决多类分类问题的研究重点.为此提出利用单层感知器作为学习框架,结合解码策略把输出编码矩阵各码元值映射为感知器网络中的权值,同时引入含权值取值约束的目标函数作为该网络代价函数,并... 构造基于数据编码矩阵是目前利用纠错输出编码解决多类分类问题的研究重点.为此提出利用单层感知器作为学习框架,结合解码策略把输出编码矩阵各码元值映射为感知器网络中的权值,同时引入含权值取值约束的目标函数作为该网络代价函数,并对其进行学习,最终得到基于子类划分的数据编码矩阵.实验中利用人工数据集和UCI数据集并选择线性逻辑分类器作为基分类器分别进行测试,通过与几种经典编码方法比较,结果表明该编码方法能在编码长度较小情况下得到更好的分类效果. 展开更多
关键词 多类分类 纠错输出编码 神经网络
在线阅读 下载PDF
基于纠错编码的CSNN及其在遥感图像分类中的应用 被引量:1
12
作者 蒋艳凰 周海芳 杨学军 《计算机研究与发展》 EI CSCD 北大核心 2003年第7期918-924,共7页
单输出组合神经网络 (CSNN)克服了BP神经网络固有的缺陷 ,具有网络结构确定、分类行为易于解释、并行性好等优点 ,但分类精度比经过结构选择的BPNN略差 采用纠错编码可以提高CSNN的分类精度 ,首先根据类别数与纠错能力确定类别码组 ,每... 单输出组合神经网络 (CSNN)克服了BP神经网络固有的缺陷 ,具有网络结构确定、分类行为易于解释、并行性好等优点 ,但分类精度比经过结构选择的BPNN略差 采用纠错编码可以提高CSNN的分类精度 ,首先根据类别数与纠错能力确定类别码组 ,每个码字对应一种类别 ,每个SNN子网对这些码字中的同一位进行训练 ,从而确定网络结构与每个子网所学习的二值函数 ;对未知类别的样本进行分类时 ,各SNN的结果组成一个输出码 ,计算该输出码与各类别码的汉明距离 ,选择与其距离最近的类别码所对应的类别为该样本的类别 ;基于纠错编码的CSNN的分类行为易于转化为规则集形式 ,可理解性强 将该网络结构用于遥感图像分类 ,并与其他分类算法进行比较 ,结果表明采用纠错编码技术 ,CSNN不仅具备原有的各项优点 。 展开更多
关键词 输出组合神经网络 CSNN 监督学习 纠错输出编码 遥感图像分类
在线阅读 下载PDF
基于支持向量机和输出编码的文本分类器研究 被引量:8
13
作者 刘良斌 王小平 《计算机应用》 CSCD 北大核心 2004年第8期32-34,共3页
介绍了一种支持向量机与输出编码相结合的文本分类器算法 ,采用一对多、一对一和纠错编码三种编码方式以及相似度计算的海明码距、边界损失方法进行文本分类和测试 ,表明一对多编码与边界损失相似度计算相结合的分类器系统具有最高的查... 介绍了一种支持向量机与输出编码相结合的文本分类器算法 ,采用一对多、一对一和纠错编码三种编码方式以及相似度计算的海明码距、边界损失方法进行文本分类和测试 ,表明一对多编码与边界损失相似度计算相结合的分类器系统具有最高的查全率和查准率。 展开更多
关键词 文本分类 支持向量机 输出纠错编码
在线阅读 下载PDF
基于ROC的三元再编码研究 被引量:1
14
作者 雷蕾 王晓丹 罗玺 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2515-2522,共8页
针对三元编码矩阵中基分类器不包含被忽略样本类别先验知识的问题,该文提出一种基于接收机工作特性(ROC)曲线的矩阵再编码方法。首先基于ROC曲线寻找构造拒绝域的阈值对,从而获得最优分类器;然后利用最优分类器对训练样本中被忽略的类... 针对三元编码矩阵中基分类器不包含被忽略样本类别先验知识的问题,该文提出一种基于接收机工作特性(ROC)曲线的矩阵再编码方法。首先基于ROC曲线寻找构造拒绝域的阈值对,从而获得最优分类器;然后利用最优分类器对训练样本中被忽略的类别进行分类,将经典的二值输出变为三值输出,从而对初始编码矩阵的码元"0"进行重新编码。在解码阶段,采用经典的汉明距离解码方法对未知样本进行决策。该方法能够避免基分类器的二次训练,适用于任意的三元纠错输出编码,具有良好的普适性和实用性。基于人工和UCI公共数据集的实验结果表明该方法简单高效,在不增加训练时间的基础上,能够提高解码的速度和精度,促进分类效果的提升。 展开更多
关键词 三元纠错输出编码 二次编码 最优分类器 拒绝域 接收机工作特性
在线阅读 下载PDF
基于Hadamard纠错码核匹配追踪的多类分类方法
15
作者 余晓东 雷英杰 +1 位作者 王睿 卢明 《系统工程与电子技术》 EI CSCD 北大核心 2015年第10期2228-2233,共6页
针对传统核匹配追踪(kernel matching pursuit,KMP)学习机只能解决二类分类问题的不足,结合纠错输出编码(error-correcting output codes,ECOC)的思想,提出了一种基于Hadamard纠错码的核匹配追踪多类分类方法。该算法通过Hadmard纠错码... 针对传统核匹配追踪(kernel matching pursuit,KMP)学习机只能解决二类分类问题的不足,结合纠错输出编码(error-correcting output codes,ECOC)的思想,提出了一种基于Hadamard纠错码的核匹配追踪多类分类方法。该算法通过Hadmard纠错码将核匹配追踪算法推广到多类分类领域,并利用纠错码本身具备的纠错能力提高了分类器的泛化性能。实验中分别对UCI数据集和3种典型空天目标的高分辨一维距离像(high resolution range profile,HRRP)数据集进行测试,通过与2种经典的编码方法进行比较,结果表明该编码方法可以显著提高分类器的性能和鲁棒性。 展开更多
关键词 模式识别 核匹配追踪 纠错输出编码 多类分类 error-correcting output codes (ECOC)
在线阅读 下载PDF
基于有序编码的核极限学习顺序回归模型 被引量:3
16
作者 李佩佳 石勇 +1 位作者 汪华东 牛凌峰 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1287-1293,共7页
顺序回归是机器学习领域中介于分类和回归之间的有监督问题。在实际中,许多带有序关系标签的问题都可以被建模成顺序回归问题,因此顺序回归受到众多学者的关注。基于极限学习机(ELM)的算法能有效避免因迭代过程陷入的局部最优解,减少训... 顺序回归是机器学习领域中介于分类和回归之间的有监督问题。在实际中,许多带有序关系标签的问题都可以被建模成顺序回归问题,因此顺序回归受到众多学者的关注。基于极限学习机(ELM)的算法能有效避免因迭代过程陷入的局部最优解,减少训练时间,但基于极限学习机的算法在顺序回归问题上的研究较少。该文将核极限学习机与纠错输出编码相结合,提出了一种基于有序编码的核极限学习顺序回归模型。该模型有效解决了如何在顺序回归中取得良好的特征映射以及如何避免传统极限学习机中隐层节点个数依赖于人工设置的问题。为验证提出模型的有效性,该文在多个顺序回归数据集上进行了测试,测试结果表明,相比于传统ELM模型,该文提出的模型在准确率上平均提升了10.8%,在数据集上预测表现最优,而且获得了最短的训练时间,从而验证了模型的有效性。 展开更多
关键词 纠错输出编码 顺序回归 极限学习机 核函数
在线阅读 下载PDF
基于改进ECOC分类器的直流电缆终端接头局放模式识别 被引量:14
17
作者 许永鹏 杨丰源 +3 位作者 钱勇 盛戈皞 李喆 江秀臣 《中国电机工程学报》 EI CSCD 北大核心 2017年第4期1260-1267,共8页
绝缘缺陷问题直接影响直流XLPE电缆的运行安全,而准确的绝缘状态诊断对保证直流输电系统正常运行具有重要意义,由于直流电缆的故障诊断目前研究处于起步阶段,且局部放电特征与交流XLPE电缆具有明显区别。针对直流XLPE电缆出现的绝缘缺... 绝缘缺陷问题直接影响直流XLPE电缆的运行安全,而准确的绝缘状态诊断对保证直流输电系统正常运行具有重要意义,由于直流电缆的故障诊断目前研究处于起步阶段,且局部放电特征与交流XLPE电缆具有明显区别。针对直流XLPE电缆出现的绝缘缺陷以及产生的局部放电特点,该文设计了4种直流XLPE电缆终端接头典型的绝缘缺陷物理模型,根据q-(35)t-n(即放电幅值,放电间隔,放电次数)局放信号图,提出了基于改进ECOC分类器的直流电缆终端局放模式识别法。首先,对局放信号图进行轮廓波(Contourlet)变换,并计算各子带系数的Tsallis熵,将其作为特征向量,带入自适应布谷鸟优化稀疏编码阵的ECOC分类器(ACS-SR-ECOC)实现缺陷模式识别。通过对大量试验数据测试,验证了所提出的识别方法在直流XLPE电缆终端接头绝缘缺陷的诊断效果,相比与4种传统的ECOC分类器,所提出的ACS-SR-EOCO分类器的识别准确率更高,至少提高10.3%。 展开更多
关键词 直流电缆 局放信号图 轮廓波变换 布谷鸟算法 纠错输出编码分类器
在线阅读 下载PDF
IKnnM-DHecoc:一种解决概念漂移问题的方法 被引量:13
18
作者 辛轶 郭躬德 +1 位作者 陈黎飞 毕亚新 《计算机研究与发展》 EI CSCD 北大核心 2011年第4期592-601,共10页
随着数据流挖掘的应用日趋广泛,带概念漂移的数据流分类问题已成为一项重要且充满挑战的工作.根据带概念漂移的数据流的特点,一个有效的学习器必须能跟踪并快速适应这种变化.一种基于增量KnnModel的动态层次编码算法被提出用于解决数据... 随着数据流挖掘的应用日趋广泛,带概念漂移的数据流分类问题已成为一项重要且充满挑战的工作.根据带概念漂移的数据流的特点,一个有效的学习器必须能跟踪并快速适应这种变化.一种基于增量KnnModel的动态层次编码算法被提出用于解决数据流的概念漂移问题.在将数据流划分为数据块后,根据增量KnnModel算法对每块的预学习结果构建并更新类别层次树、层次编码,用可增量学习的分类算法对照编码划分进行学习,并生成备选分类器集.最后依据活跃度对结点进行剪枝处理以减少计算代价.在预测阶段,利用增量KnnModel算法和动态层次纠错输出编码算法的各自优势进行联合预测.实验结果表明:基于增量KnnModel算法的动态层次纠错输出编码算法不但能够提高模型学习的动态性和分类的正确性,而且还能够快速适应概念漂移的情况. 展开更多
关键词 概念漂移 数据流 纠错输出编码 增量Knn模型 分类
在线阅读 下载PDF
ECOC多类分类研究综述 被引量:13
19
作者 雷蕾 王晓丹 +2 位作者 罗玺 周进登 陈琴 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1794-1800,共7页
纠错输出编码能有效地将多类问题转化为二类问题进行求解,已受到国内外从事机器学习的研究者们的重视,并使其成为多类分类领域的研究热点.本文首先分析了ECOC多类分类的原理和框架,指出解决ECOC多类分类问题的关键在于解码策略和编码策... 纠错输出编码能有效地将多类问题转化为二类问题进行求解,已受到国内外从事机器学习的研究者们的重视,并使其成为多类分类领域的研究热点.本文首先分析了ECOC多类分类的原理和框架,指出解决ECOC多类分类问题的关键在于解码策略和编码策略的确定;然后从这两个关键点出发综述了ECOC多类分类的最新进展和应用领域;最后指出了目前存在的问题以及下一步研究方向.论文研究成果将为基于ECOC多类分类方法在实际应用过程中起借鉴和参考作用. 展开更多
关键词 多类分类 纠错输出编码 机器学习
在线阅读 下载PDF
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 被引量:5
20
作者 黄涛 李小昱 +5 位作者 金瑞 库静 徐森淼 徐梦玲 武振中 孔德国 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第4期992-996,共5页
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,... 针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 展开更多
关键词 高光谱成像 流形学习 纠错输出编码 最小二乘支持向量机 内外部缺陷 马铃薯
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部