为了更有效分析管道信号,提出一种基于采用在恶劣环境下的遗传算法(Genetic Algorithms in Harsh Environments,GAHE)优化变分模态分解(Variational Mode Decomposition,VMD)联合奇异值分解(Singular Value Decomposition,SVD)与选择性...为了更有效分析管道信号,提出一种基于采用在恶劣环境下的遗传算法(Genetic Algorithms in Harsh Environments,GAHE)优化变分模态分解(Variational Mode Decomposition,VMD)联合奇异值分解(Singular Value Decomposition,SVD)与选择性累计能量贡献率(Selective Cumulative Energy Contribution,SCEC)的互补去噪方法。首先,提出用GAHE算法优化VMD算法并结合相对熵对信号中的中高频噪声进行初步消噪,解决VMD参数难以确定和传统遗传算法收敛慢的问题。其次,提出采用SCEC算法结合SVD算法对信号中残留的中低频噪声进行消噪,解决非线性、非平稳信号中大数量级的直流分量影响奇异值选择的问题。最后,通过实验与分析表明:GAHE优化算法收敛速度更快;SCEC奇异值选择法的抗直流能力更强;所提算法的处理效果较优且算法两部分具有互补特性。展开更多
文摘负荷历史数据是进行中长期负荷预测的基础。历史数据异常及缺失将严重影响负荷预测模型的精度及有效性。针对传统异常数据辨识方法和缺失数据填补方法的不足,提出了基于T2椭圆图的异常数据识别和基于最小二乘支持向量机(least square support vector machine,LSSVM)的缺失数据填补方法。采用偏最小二乘法(partial least square,PLS)提取历史数据主成份,计算各历史样本对主成份的累积贡献率(accumulative contribution rate,ACR),并绘制T2椭圆,从而识别出历史样本贡献率过大的异常数据。用最小二乘支持向量机拟合历史数据变化趋势,从而实现缺失数据的填补。算例结果表明:T2椭圆图能有效识别历史数据中的异常样本;最小二乘支持向量机具有良好的数据填补特性,具有较强的实用价值。
文摘为了更有效分析管道信号,提出一种基于采用在恶劣环境下的遗传算法(Genetic Algorithms in Harsh Environments,GAHE)优化变分模态分解(Variational Mode Decomposition,VMD)联合奇异值分解(Singular Value Decomposition,SVD)与选择性累计能量贡献率(Selective Cumulative Energy Contribution,SCEC)的互补去噪方法。首先,提出用GAHE算法优化VMD算法并结合相对熵对信号中的中高频噪声进行初步消噪,解决VMD参数难以确定和传统遗传算法收敛慢的问题。其次,提出采用SCEC算法结合SVD算法对信号中残留的中低频噪声进行消噪,解决非线性、非平稳信号中大数量级的直流分量影响奇异值选择的问题。最后,通过实验与分析表明:GAHE优化算法收敛速度更快;SCEC奇异值选择法的抗直流能力更强;所提算法的处理效果较优且算法两部分具有互补特性。