期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合GNSS观测信息的激光紧耦合SLAM单点定位技术
1
作者 李燕 王晶 《激光杂志》 北大核心 2025年第4期234-239,共6页
激光SLAM应用时无法提供全局坐标信息,且容易产生累积误差,导致定位误差。为此,研究融合GNSS观测信息的激光紧耦合SLAM单点定位技术。通过紧耦合GNSS观测信息与激光SLAM,能够充分利用GNSS的全局定位能力和激光雷达的局部高精度环境感知... 激光SLAM应用时无法提供全局坐标信息,且容易产生累积误差,导致定位误差。为此,研究融合GNSS观测信息的激光紧耦合SLAM单点定位技术。通过紧耦合GNSS观测信息与激光SLAM,能够充分利用GNSS的全局定位能力和激光雷达的局部高精度环境感知能力,从激光点云数据中提取特征点,并生成特征描述子,与预先构建的地图进行配准,提高数据处理的效率和精度,使得定位过程更加鲁棒。引入遗传算法进行SLAM单点粗定位,通过适应度函数评估不同解的质量,并不断优化解空间,以找到最优或次优的初步定位结果,克服复杂环境中的定位局限性。利用GNSS观测信息计算误差因子,对SLAM单点粗定位结果进行补偿,结合全局定位信息和局部环境感知信息,实现SLAM单点精定位。结果表明:所研究的技术的平均定位误差小,准确性更高。 展开更多
关键词 GNSS观测信息 激光点云 特征提取 点云匹配 紧耦合slam单点定位
在线阅读 下载PDF
面向动态环境的紧耦合视觉惯性SLAM改进算法 被引量:1
2
作者 郭瑞奇 修睿 +1 位作者 孙勇 毛喆 《计算机工程与应用》 北大核心 2025年第4期339-348,共10页
SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统... SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。 展开更多
关键词 同时定位与地图创建(slam) 视觉惯性耦合 动态环境 向量场一致性 ORB-slam3
在线阅读 下载PDF
面向矿井环境的激光雷达-惯性-视觉紧耦合SLAM算法
3
作者 卢艳军 吕宛桐 张晓东 《工矿自动化》 北大核心 2025年第9期142-149,166,共9页
矿井环境中非结构化地形、光照条件差及特征重复等条件导致单一传感器的同时定位与地图构建(SLAM)精度不足,多传感器数据紧耦合融合可在一定程度上提升精度,但仍存在计算量大、光照突变适应性差等问题。针对上述问题,以快速紧耦合稀疏... 矿井环境中非结构化地形、光照条件差及特征重复等条件导致单一传感器的同时定位与地图构建(SLAM)精度不足,多传感器数据紧耦合融合可在一定程度上提升精度,但仍存在计算量大、光照突变适应性差等问题。针对上述问题,以快速紧耦合稀疏直接激光雷达-惯性-视觉里程计(FAST-LIVO)算法为基础进行改进,提出一种面向矿井环境的激光雷达-惯性-视觉紧耦合SLAM算法。在多传感器数据紧耦合融合部分,采用LK(Lucas-Kanade)光流法代替原有稀疏直接法,利用光流法追踪稳定特征点并构建视觉重投影误差,同时利用随机样本一致(RANSAC)算法剔除离群点以保留高质量视觉约束;结合惯性测量单元(IMU)先验估计与激光雷达点到平面残差,通过迭代误差状态卡尔曼滤波器实现多传感器数据紧耦合融合,输出高精度位姿。在地图构建部分,采用增量式k-d树(ikd-Tree)动态管理点云以构建激光雷达局部地图;通过网格筛选与Shi-Tomas得分计算提取视觉特征点,并采用数组管理实时移除视场外特征点以构建视觉局部地图;通过将激光雷达点云投影至对应图像提取RGB颜色信息生成彩色点云帧,再依据优化位姿拼接彩色点云帧以构建彩色点云地图。基于Gazebo仿真平台的测试结果表明,相比FAST-LIVO算法,所提算法的绝对轨迹误差(ATE)和相对位姿误差(RPE)均降低了20%以上,且巷道侧壁、内部料堆轮廓、地面等特征更清晰。在公开数据集M2DGR上的测试结果表明,所提算法的定位精度较LEGO-LOAM,FAST-LIO及FAST-LIVO算法有所提升,且在转弯处无明显漂移,轨迹稳定性更优,且所提算法处理数据的平均时间缩短。在长走廊模拟环境的测试结果表明,所提算法对空间结构的还原更清晰,线条、轮廓等细节更精准,噪点抑制效果更佳,能更准确地反映真实环境布局。 展开更多
关键词 机器人定位 同时定位与地图构建 slam 激光雷达-惯性-视觉 多传感器数据耦合融合 光流法 卡尔曼滤波
在线阅读 下载PDF
基于滑动窗口优化的激光雷达惯性测量单元紧耦合同时定位与建图算法 被引量:5
4
作者 刘振宇 惠泽宇 +1 位作者 郭旭 李刚 《科学技术与工程》 北大核心 2022年第21期9167-9175,共9页
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算... 针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。 展开更多
关键词 同时定位与建图(slam) 激光雷达 惯性测量单元耦合 局部地图
在线阅读 下载PDF
煤矿井下移动机器人多传感器自适应融合SLAM方法 被引量:10
5
作者 马艾强 姚顽强 《工矿自动化》 CSCD 北大核心 2024年第5期107-117,共11页
基于同时定位与建图(SLAM)技术的移动机器人能够快速、准确、自动化地采集空间数据,进行空间智能感知和环境地图构建,是实现煤矿智能化和无人化的关键。针对目前煤矿井下多传感器融合SLAM方法存在机器人前端位姿估计退化失效和后端融合... 基于同时定位与建图(SLAM)技术的移动机器人能够快速、准确、自动化地采集空间数据,进行空间智能感知和环境地图构建,是实现煤矿智能化和无人化的关键。针对目前煤矿井下多传感器融合SLAM方法存在机器人前端位姿估计退化失效和后端融合精度不足的问题,提出了一种煤矿井下移动机器人激光雷达(LiDAR)−视觉−惯性(IMU)自适应融合SLAM方法。对LiDAR点云数据进行聚类分割,提取线面特征,利用IMU预积分状态进行畸变校正,采用基于自适应Gamma校正和对比度受限的自适应直方图均衡化(CLAHE)的图像增强算法处理低照度图像,再提取视觉点线特征。用IMU预积分状态为LiDAR特征匹配与视觉特征跟踪提供位姿初始值。根据LiDAR相邻帧的线面特征匹配得到移动机器人位姿,之后进行视觉点线特征跟踪,分别计算LiDAR、视觉、IMU位姿变化值,通过设定动态阈值来检测前端里程计的稳定性,自适应选取最优位姿。对不同传感器构建残差项,包括点云匹配残差、IMU预积分残差、视觉点线残差、边缘化残差。为了兼顾精度与实时性,基于滑动窗口实现激光点云特征、视觉特征、IMU测量的多源数据联合非线性优化,实现煤矿井下连续可用、精确可靠的SLAM。对图像增强前后效果进行试验验证,结果表明,基于自适应Gamma校正和CLAHE的图像增强算法能显著提升背光区和光照区的亮度和对比度,增加图像中的特征信息,大幅提升特征点提取数量和匹配质量,匹配成功率达90.7%。为验证所提方法的性能,在狭长走廊和煤矿巷道场景下进行试验验证,结果表明,所提方法在狭长走廊场景的定位均方根误差为0.15 m,构建的点云地图一致性较高;在煤矿巷道场景中的定位均方根误差为0.19 m,构建的点云地图可真实地反映煤矿井下环境。 展开更多
关键词 煤矿井下移动机器人 同时定位与建图 激光雷达−视觉−惯性自适应融合 图像增强 位姿估计 多传感器数据融合 滑动窗口耦合优化 slam
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部