期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种改进Faster R-CNN的图像篡改检测模型
被引量:
4
1
作者
田秀霞
刘正
+1 位作者
刘秋旭
李浩然
《计算机工程与科学》
CSCD
北大核心
2023年第6期1030-1039,共10页
随着人工智能的发展,数字图像被广泛应用于各大领域。然而,图像编辑软件的出现导致大量图像受到恶意篡改,严重影响了图像内容的真实性。图像篡改检测的研究不同于通用的目标检测,它需要更加关注图像本身的篡改信息,而这些信息表现形式...
随着人工智能的发展,数字图像被广泛应用于各大领域。然而,图像编辑软件的出现导致大量图像受到恶意篡改,严重影响了图像内容的真实性。图像篡改检测的研究不同于通用的目标检测,它需要更加关注图像本身的篡改信息,而这些信息表现形式往往比较微弱,所以检测时需要侧重于学习更丰富的篡改特征。提出一种结合梯度边缘信息和注意力机制的双流Faster R-CNN模型,可以实现不同篡改类型区域的检测定位。双流之一为原色流,利用注意力机制提取图像的表层特征,如亮度对比、篡改边界的视觉差异等。双流之二为梯度流,利用梯度高通滤波器增强真实区域与篡改区域之间的边缘异常特征,使模型更容易发现篡改图像中微弱的篡改痕迹。通过紧凑型双线性池化将原色流和梯度流的特征进行融合。由于公开可用的图像篡改数据集规模较小,基于PASCAL VOC 2012数据集创建了规模为10000幅的图像篡改检测数据集,用于模型预训练。在COVER、COLUMBIA和CASIA数据集上的检测结果表明,所提模型的检测精度相比当前最好模型的提高了7.1%~9.6%,并在JPEG压缩和图像模糊攻击下表现出了更高的鲁棒性。
展开更多
关键词
图像篡改检测
深度学习
注意力机制
紧凑型双线性池化
在线阅读
下载PDF
职称材料
题名
一种改进Faster R-CNN的图像篡改检测模型
被引量:
4
1
作者
田秀霞
刘正
刘秋旭
李浩然
机构
上海电力大学计算机科学与技术学院
出处
《计算机工程与科学》
CSCD
北大核心
2023年第6期1030-1039,共10页
基金
国家自然科学基金(61772327)
国网甘肃省电力公司电力科学研究院横向项目(H2019-275)
上海市大数据管理系统工程研究中心开放课题(H2020-216)。
文摘
随着人工智能的发展,数字图像被广泛应用于各大领域。然而,图像编辑软件的出现导致大量图像受到恶意篡改,严重影响了图像内容的真实性。图像篡改检测的研究不同于通用的目标检测,它需要更加关注图像本身的篡改信息,而这些信息表现形式往往比较微弱,所以检测时需要侧重于学习更丰富的篡改特征。提出一种结合梯度边缘信息和注意力机制的双流Faster R-CNN模型,可以实现不同篡改类型区域的检测定位。双流之一为原色流,利用注意力机制提取图像的表层特征,如亮度对比、篡改边界的视觉差异等。双流之二为梯度流,利用梯度高通滤波器增强真实区域与篡改区域之间的边缘异常特征,使模型更容易发现篡改图像中微弱的篡改痕迹。通过紧凑型双线性池化将原色流和梯度流的特征进行融合。由于公开可用的图像篡改数据集规模较小,基于PASCAL VOC 2012数据集创建了规模为10000幅的图像篡改检测数据集,用于模型预训练。在COVER、COLUMBIA和CASIA数据集上的检测结果表明,所提模型的检测精度相比当前最好模型的提高了7.1%~9.6%,并在JPEG压缩和图像模糊攻击下表现出了更高的鲁棒性。
关键词
图像篡改检测
深度学习
注意力机制
紧凑型双线性池化
Keywords
image tampering detection
deep learning
attention mechanism
compact bilinear pooling
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种改进Faster R-CNN的图像篡改检测模型
田秀霞
刘正
刘秋旭
李浩然
《计算机工程与科学》
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部