水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入...水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入量的变化量之间的数学关系,结合经典概率论,提出了能够分辨模型结构不确定性来源的考虑模型结构不确定性的动态系统响应曲线校正方法(dynamic system response curve method considering the model structure uncertainty,UNDSRC).将该方法应用于大坡岭流域与富水流域检验UNDSRC方法的综合表现,并与DSRC方法进行比较.研究表明:1)在实际流域检验中,UNDSRC方法相较于DSRC方法具有更好的校正效果,校正效果评价系数分别为0.82与0.60;2)DSRC方法在2个实际流域均可以对新安江模型进行有效校正,且校正效果相似;3)UNDSRC方法校正效果优异且稳定,能够适应更复杂的流域下垫面情况,方法对洪峰流量的校正优于对径流深的校正;4)校正精度相同的情况下,UNDSRC方法相较于DSRC方法具有更小的岭系数.展开更多
主要研究关于面板数据的有限阶固定效应的动态变系数回归模型(简称FDVCM)的统计推断问题.基于B-样条函数和广义矩估计(简称GMM)方法,首先建立了未知系数函数的非参数GMM估计,并证明大样本情形下该估计达到最优非参数收敛速度且具有渐近...主要研究关于面板数据的有限阶固定效应的动态变系数回归模型(简称FDVCM)的统计推断问题.基于B-样条函数和广义矩估计(简称GMM)方法,首先建立了未知系数函数的非参数GMM估计,并证明大样本情形下该估计达到最优非参数收敛速度且具有渐近正态性质.然而实际问题中模型的动态阶数完全未知,也可能存在其它冗余的回归变量,文中借助文[Fan J,Li R.Variable selection via penalized likelihood and its oracle properties.Journal of the American Statistical Association,2001,96(456):1348-1360]中的smoothly clipped absolute deviation(简称SCAD)惩罚函数同时识别真实的动态阶数和显著的外生回归变量.同时建立了压缩估计的Oracle性质,即所识别的模型与真实模型中的参数估计具有相同的渐近分布.最后,无论是数值试验还是实例数据分析都验证了本文方法的合理性和可行性.展开更多
文摘水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入量的变化量之间的数学关系,结合经典概率论,提出了能够分辨模型结构不确定性来源的考虑模型结构不确定性的动态系统响应曲线校正方法(dynamic system response curve method considering the model structure uncertainty,UNDSRC).将该方法应用于大坡岭流域与富水流域检验UNDSRC方法的综合表现,并与DSRC方法进行比较.研究表明:1)在实际流域检验中,UNDSRC方法相较于DSRC方法具有更好的校正效果,校正效果评价系数分别为0.82与0.60;2)DSRC方法在2个实际流域均可以对新安江模型进行有效校正,且校正效果相似;3)UNDSRC方法校正效果优异且稳定,能够适应更复杂的流域下垫面情况,方法对洪峰流量的校正优于对径流深的校正;4)校正精度相同的情况下,UNDSRC方法相较于DSRC方法具有更小的岭系数.
文摘主要研究关于面板数据的有限阶固定效应的动态变系数回归模型(简称FDVCM)的统计推断问题.基于B-样条函数和广义矩估计(简称GMM)方法,首先建立了未知系数函数的非参数GMM估计,并证明大样本情形下该估计达到最优非参数收敛速度且具有渐近正态性质.然而实际问题中模型的动态阶数完全未知,也可能存在其它冗余的回归变量,文中借助文[Fan J,Li R.Variable selection via penalized likelihood and its oracle properties.Journal of the American Statistical Association,2001,96(456):1348-1360]中的smoothly clipped absolute deviation(简称SCAD)惩罚函数同时识别真实的动态阶数和显著的外生回归变量.同时建立了压缩估计的Oracle性质,即所识别的模型与真实模型中的参数估计具有相同的渐近分布.最后,无论是数值试验还是实例数据分析都验证了本文方法的合理性和可行性.