Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).