Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is o...Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.展开更多
In this paper,Waish functions are applied to dynamical system analysis. An operational matrix for differential is developed first and compared with M. S. Corrington's method vis a simple example. Then this operati...In this paper,Waish functions are applied to dynamical system analysis. An operational matrix for differential is developed first and compared with M. S. Corrington's method vis a simple example. Then this operational matrix is used to analyze both time-invariant and time-variant systems ,and examples are presented respectively.展开更多
This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) the...This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) theory used to verify the system is input-to-state stable. Combining the Nussbaum gain with backstepping techniques,a robust adaptive fuzzy algorithm is presented by employing fuzzy systems as an approximator for unknown nonlinearities in the system. It is proved that the proposed algorithm that guarantees all signals in the closed-loop system are ultimately bounded. Consequently,a ship's linear track-keeping control can be implemented. Simulation results using Dalian Maritime University's ocean-going training ship 'YULONG' are presented to validate the effectiveness of the proposed algorithm.展开更多
文摘Time delay existes widely in various real engineering systems and can result in unsatisfactory performance or even an instability of control systems. Therefore, to investigate the stability for time delay systems is of vitul importance in control theory and its applications. Many researchers have studied the stability criteria of systems with constant delay or bound varying time delay, but few of them studied large time delay or unbound time delay. Large time delay existes commonly in various engineering applications. In this paper, the absolute stability of Lurie type direct control systems and indirect control systems with several time delays are discussed. Based on Lyapunov theory, the new delay dependent absolute stability criteria are derived. In our theorem, time delays can be unbound functions, which shows that the results are less conservative than that of existed criteria.
文摘In this paper,Waish functions are applied to dynamical system analysis. An operational matrix for differential is developed first and compared with M. S. Corrington's method vis a simple example. Then this operational matrix is used to analyze both time-invariant and time-variant systems ,and examples are presented respectively.
基金Supported by the National Natural Science Foundation of China under Grant No. 10572094.
文摘This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) theory used to verify the system is input-to-state stable. Combining the Nussbaum gain with backstepping techniques,a robust adaptive fuzzy algorithm is presented by employing fuzzy systems as an approximator for unknown nonlinearities in the system. It is proved that the proposed algorithm that guarantees all signals in the closed-loop system are ultimately bounded. Consequently,a ship's linear track-keeping control can be implemented. Simulation results using Dalian Maritime University's ocean-going training ship 'YULONG' are presented to validate the effectiveness of the proposed algorithm.