Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly charact...Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.展开更多
A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its referenc...A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.展开更多
Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is prop...Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is proposed. The influence of the flexural stiffness of the track-bridge system, the vertical and longitudinal stiffness of the mortar layer,gap position and gap length on the natural frequencies of a track-bridge system is discussed. The results show that the natural frequencies of the track-bridge system are more sensitive to the change of the flexural stiffness of the bridge layer. The change of the longitudinal stiffness of the mortar layer and gap position has no obvious effect on the trackbridge system’s natural frequencies, while the interlayer vertical stiffness has a larger impact. The gap length has a more significant effect on the 4th-5th order natural frequencies of the track-bridge system. The range of the natural frequencies that are affected by the gap widens as the gap length increases.展开更多
文摘Boehmeria nivea var.strigosa Zeng Y.Wu&Y.Zhao,a new variety of B.nivea(Urticaceae)from Southwest China,is here described based on evidence from morphology and molecular phylogeny.This new variety is mainly characterized by its green abaxial leaf blade,partly connate stipules,and densely patent strigose hairs on stems and potioles.The phylogenetic analysis based on rbc L,nrDNA and rbc L+nrDNA datasets,revealed that all individuals of B.nivea var.strigosa formed a monophyletic group.The conservation status of B.nivea var.strigosa is assessed as“Near Threatened”(NT)according to IUCN evaluation criteria.The discovery of this new variety is not only crucial for the taxonomy of ramie,but also provides reference for the exploration and utilization of ramie.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by Research Fund for the Doctoral Program of Higher Education of China
文摘A simplex particle swarm optimization(simplex-PSO) derived from the Nelder-Mead simplex method was proposed to optimize the high dimensionality functions.In simplex-PSO,the velocity term was abandoned and its reference objectives were the best particle and the centroid of all particles except the best particle.The convergence theorems of linear time-varying discrete system proved that simplex-PSO is of consistent asymptotic convergence.In order to reduce the probability of trapping into a local optimal value,an extremum mutation was introduced into simplex-PSO and simplex-PSO-t(simplex-PSO with turbulence) was devised.Several experiments were carried out to verify the validity of simplex-PSO and simplex-PSO-t,and the experimental results confirmed the conclusions:(1) simplex-PSO-t can optimize high-dimension functions with 200-dimensionality;(2) compared PSO with chaos PSO(CPSO),the best optimum index increases by a factor of 1×102-1×104.
基金Projects(U1934207,52078487,51778630) supported by the National Natural Science Foundation of ChinaProject(502501006) supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2019RS3009)supported by the Hunan Innovative Provincial Construction Project,ChinaProjects(HJGZ20211003,HJGZ20212009)supported by State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,China。
文摘Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is proposed. The influence of the flexural stiffness of the track-bridge system, the vertical and longitudinal stiffness of the mortar layer,gap position and gap length on the natural frequencies of a track-bridge system is discussed. The results show that the natural frequencies of the track-bridge system are more sensitive to the change of the flexural stiffness of the bridge layer. The change of the longitudinal stiffness of the mortar layer and gap position has no obvious effect on the trackbridge system’s natural frequencies, while the interlayer vertical stiffness has a larger impact. The gap length has a more significant effect on the 4th-5th order natural frequencies of the track-bridge system. The range of the natural frequencies that are affected by the gap widens as the gap length increases.