An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of t...An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.展开更多
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon...The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario.展开更多
Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
基金Projects(51039001,51009063) supported by the National Natural Science Foundation of ChinaProject(SX2010-026) supported by State Council Three Gorges Project Construction Committee Executive Office,China+1 种基金Project(2012BS046) supported by Henan University of Technology,ChinaProject(BYHGLC-2010-02) supported by the Guangzhou Water Authority,China
文摘An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(2014FJ3122) supported by the Science and Technology Project of Hunan Province,China
文摘The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario.
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.