期刊文献+
共找到1,608篇文章
< 1 2 81 >
每页显示 20 50 100
基于红狐优化支持向量机回归的船舶备件预测
1
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
2
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构姿态 掘进比能 支持向量回归
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
3
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
4
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
采用改进支持向量机的浅海水声信道小样本估计 被引量:2
5
作者 郑巧宁 郑浩赐 +2 位作者 李茂林 童峰 陈东升 《哈尔滨工程大学学报》 北大核心 2025年第3期390-400,共11页
针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道... 针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道,在支持向量机代价函数中引入时变因子改善估计器与时变信道的适配程度,对该算法在时变信道下的小样本估计性能表现进行了仿真和浅海信道实测验证。结果表明:本文算法在信道估计误差和误比特性能方面均优于传统估计器,在信道估计观测窗长较短的情况下尤其如此。本文提出的改进支持向量机估计算法在小样本场景下展现出优异性能,为快变浅海水声信道估计提供了有效解决方案,对提升水声通信性能具有重要意义。 展开更多
关键词 支持向量回归 改进支持向量 稀疏性 小样本 时变信道 水声通信 信道估计 浅海水声环境
在线阅读 下载PDF
精确在线支持向量回归在股指预测中的应用 被引量:8
6
作者 田翔 邓飞其 《计算机工程》 EI CAS CSCD 北大核心 2005年第22期18-20,共3页
建立了基于精确在线支持向量机回归算法的股指短期预测模型,并通过和另外两种基于传统训练方式的支持向量机预测模型进行比较,验证了该方法的有效性。
关键词 精确在线支持向量机回归 非线性时间序列 股市指数 预测
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
7
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于变量敏感度筛选的回归型支持向量机的数控机床热误差预测 被引量:2
8
作者 李铁军 崔尚仪 张义民 《机械设计与制造》 北大核心 2024年第9期41-43,50,共4页
随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低... 随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低的干扰自变量。本方法与基本SVR模型对数控机床热误差预测值进行对比,结果表明基本SVR受到敏感度低的干扰自变量影响,预测结果与实测热误差结果偏差较大;经过变量敏感度筛选之后的SVR混合模型预测值具有更高的准确度,验证了此模型的可行性。 展开更多
关键词 数控 回归支持向量 变量敏感度筛选 热误差
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
9
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
基于改进自适应最小二乘支持向量机的飞灰含碳量软测量方法
10
作者 郭文康 莫正阳 李益国 《动力工程学报》 北大核心 2025年第7期1082-1090,共9页
飞灰含碳量是实现锅炉效率在线测量的重要参数之一,然而目前的飞灰含碳量测量装置存在测量周期长和故障率高等缺点。为此,通过改进模型更新方法提出一种新的改进自适应最小二乘支持向量机(IALSSVM)算法,并且将其用于建立某660 MW燃煤锅... 飞灰含碳量是实现锅炉效率在线测量的重要参数之一,然而目前的飞灰含碳量测量装置存在测量周期长和故障率高等缺点。为此,通过改进模型更新方法提出一种新的改进自适应最小二乘支持向量机(IALSSVM)算法,并且将其用于建立某660 MW燃煤锅炉飞灰含碳量的动态软测量模型,其中采用皮尔逊相关性分析筛选出重要变量,利用核主成分分析(KPCA)法融合重要变量信息。仿真测试结果表明:该软测量模型在测试集上的平均绝对预测误差(MAE)、平均绝对百分比误差(MAPE)分别为0.171%和19.814%,拟合优度(R~2)为0.843,具有较高的精度和稳定性。另外,新的模型更新方法在计算速度上相比于传统方法提升30%左右,对促进该模型的在线应用和实现锅炉闭环燃烧优化具有重要作用。 展开更多
关键词 飞灰含碳量 软测量模型 支持向量 特征降维 在线更新
在线阅读 下载PDF
基于逻辑回归和支持向量机耦合模型的滑坡易发性分析 被引量:10
11
作者 李成林 刘严松 +3 位作者 赖思翰 王地 何星慧 刘琦 《自然灾害学报》 CSCD 北大核心 2024年第2期75-86,共12页
滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机... 滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机(logistic regression-support vector machine,LR-SVM)耦合模型,搭建滑坡易发性评价体系,完成旺苍县滑坡易发性评价并进行模型精度比较。研究结果表明:逻辑回归-支持向量机耦合模型的评价指标结果均优于逻辑回归模型,易发性分区结果更合理,预测精度更高;在低易发区选取非滑坡点为提高滑坡易发性评价性能作用明显;研究区内道路、高程和NDVI对滑坡发育的敏感性较强;高易发区主要分布于低海拔的水系和道路两侧。 展开更多
关键词 滑坡易发性评价 逻辑回归 支持向量 耦合模型 旺苍县
在线阅读 下载PDF
精确增量式在线v型支持向量回归机学习算法 被引量:7
12
作者 顾斌杰 潘丰 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第4期466-478,共13页
为了解决v型支持向量回归机(v-supportvector regression,v-SVR)对偶问题的目标函数中增加的额外线性项从而导致无法产生有效初始解的问题和在绝缘增量调整过程中可能存在的解路径不可行更新问题,提出了精确增量式在线v-SVR学习算法.首... 为了解决v型支持向量回归机(v-supportvector regression,v-SVR)对偶问题的目标函数中增加的额外线性项从而导致无法产生有效初始解的问题和在绝缘增量调整过程中可能存在的解路径不可行更新问题,提出了精确增量式在线v-SVR学习算法.首先基于v-SVR的等价形式,利用提前调整,宽松的绝缘增量调整和精确的恢复调整有效地解决了v-SVR对偶问题存在的上述问题.然后分别对算法的可行性和有限收敛性进行了理论分析.最后在四个基准测试数据集上的仿真结果进一步验证了该算法的每一步调整都是可靠的,经过有限次数调整最终收敛到最小化问题的最优解,而且与批处理学习算法相比,随着训练样本的增加,算法在缩短学习时间上的优势显著. 展开更多
关键词 在线学习 v型支持向量回归 器学习 学习算法 可行性分析 有限收敛性分析
在线阅读 下载PDF
结合支持向量机回归应用于水体中两种喹诺酮类抗生素的荧光检测 被引量:1
13
作者 王艺霏 王晓东 +2 位作者 Zakhar Maletskyi 王莎莎 马继平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第12期3576-3582,共7页
喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度... 喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度高、准确度好,但时间消耗较久、仪器设备价格昂贵、现场检测较困难,而荧光分析技术检测时间短,尤其是三维荧光光谱技术能够在短时间内通过一次检测获得大量的目标物特征信息,通过与数据统计及机器学习模型相结合,利用数学手段可以在短时间内对多种QNs进行检测。充分利用QNs的荧光光谱信息,结合支持向量机回归(SVMR)分别创建以氧氟沙星(OFL)和诺氟沙星(NOR)为代表的QNs预测模型,再将未知样品的荧光光谱信息代入到创建的模型中,即可快速获得测定结果。在构建模型的过程中将偏最小二乘-判别分析(PLS-DA)和SVMR这两种监督学习方式作比较,发现SVMR具有良好的预测效果,通过调整参数与核函数,可使OFL和NOR在2~600μg·L^(-1)范围内具有良好的线性范围,线性相关系数均为0.9920,最低检出限在0.064~0.080μg·L^(-1)之间。将该方法应用到青岛市近岸海水和水库水的QNs检测,OFL在海水中的平均加标回收率为98.62%,在水库水中的平均加标回收率为103.90%,NOR在海水中的平均加标回收率为104.01%,在水库水中的平均加标回收率为105.89%,两种QNs在实际水体中的标准偏差均不超过9.21%。该方法检测速度快,在3 min内即可完成对一个未知样品的定量分析,可以快速筛查环境中是否存在QNs的风险因素。创新性的采用SVMR与荧光光谱技术相结合的方法,研发了一种可以用于实际水体中QNs现场快速检测的新方法,为实现环境水体中QNs的现场快速检测提供了一种科学可靠的新思路。 展开更多
关键词 荧光光谱 支持向量回归 喹诺酮类抗生素 现场快速检测
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:4
14
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
基于多分类支持向量机的变压器在线监测数据错误模式识别 被引量:2
15
作者 何宁辉 吴旭涛 +5 位作者 张佩 沙伟燕 周秀 丁培 杨擎柱 程养春 《高压电器》 CAS CSCD 北大核心 2024年第7期173-181,共9页
针对变压器在线油中溶解气体在线监测数据质量问题,统计了200多台监测装置的2020全年数据,总结了3种主要数据错误模式;提出了数据错误模式识别策略和特征参数,构建了多分类支持向量机进行错误数据识别与分类;并利用核主成分分析法和排... 针对变压器在线油中溶解气体在线监测数据质量问题,统计了200多台监测装置的2020全年数据,总结了3种主要数据错误模式;提出了数据错误模式识别策略和特征参数,构建了多分类支持向量机进行错误数据识别与分类;并利用核主成分分析法和排列组合遍历寻优法对特征向量进行了降维优化。所构建的多分类支持向量机分类器对于H_(2)错误数据识别准确率达到97.5%,对于其他气体达到90%以上。应用所构建的分类器对2020全年数据进行了统计,其中H2的错误数据达到27.14%,C_(2)H_(2)的错误数据达到1.75%。 展开更多
关键词 错误数据 模式识别 支持向量 在线监测 变压器 油中溶解气体分析
在线阅读 下载PDF
局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 被引量:19
16
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2846-2851,共6页
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR... 当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR,LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。 展开更多
关键词 局部最小二乘支持向量回归 在线建模 间歇过程 发酵
在线阅读 下载PDF
用于发酵过程在线建模的自适应局部最小二乘支持向量机回归方法 被引量:16
17
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2008年第8期2052-2057,共6页
提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链... 提出一种基于自适应局部学习的最小二乘支持向量机回归(LSSVR)在线建模方法。考虑样本间的距离和角度信息以获得更全面合理的相似样本集,推导了采用快速留一法在线优化模型参数的准则,并给出了发酵过程在线自适应模型选择的策略。以链激酶流加发酵过程为例,验证了所提出算法能够从过程的第2批次开始,同时对活性菌体浓度和链激酶浓度进行较准确的在线预报,较普通的局部LSSVR等建模方法具有更高的预报精度和自适应性。 展开更多
关键词 自适应局部学习 最小二乘支持向量回归 快速留一法 在线建模 发酵过程
在线阅读 下载PDF
回归最小二乘支持向量机的增量和在线式学习算法 被引量:112
18
作者 张浩然 汪晓东 《计算机学报》 EI CSCD 北大核心 2006年第3期400-406,共7页
首先给出回归最小二乘支持向量机的数学模型,并分析了它的性质,然后在此基础上根据分块矩阵计算公式和核函数矩阵本身的特点设计了支持向量机的增量式学习算法和在线学习算法.该算法能充分利用历史的训练结果,减少存储空间和计算时间.... 首先给出回归最小二乘支持向量机的数学模型,并分析了它的性质,然后在此基础上根据分块矩阵计算公式和核函数矩阵本身的特点设计了支持向量机的增量式学习算法和在线学习算法.该算法能充分利用历史的训练结果,减少存储空间和计算时间.仿真实验表明了这两种学习方法的有效性. 展开更多
关键词 结构风险最小化 最小二乘支持向量 在线学习
在线阅读 下载PDF
基于支持向量回归机SVR的钻削力在线预测分析 被引量:6
19
作者 张丹丹 丛岩 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第12期88-92,169,共6页
钻削力预测是深孔加工质量监测和工艺参数优化等工作的重要手段。针对现有预测方法样本需求量大、网络结构复杂以及易陷入局部极值等问题,提出了一种新的基于支持向量回归机的钻削力预测方法。首先,对钻削轴向力和扭矩预测的主要影响因... 钻削力预测是深孔加工质量监测和工艺参数优化等工作的重要手段。针对现有预测方法样本需求量大、网络结构复杂以及易陷入局部极值等问题,提出了一种新的基于支持向量回归机的钻削力预测方法。首先,对钻削轴向力和扭矩预测的主要影响因素进行分析,然后确定预测模型的输入输出参数,进一步建立了基于支持向量回归机的钻削力预测模型。仿真实例的预测结果表明:利用所构建的SVR预测模型对10组样本扭矩和轴向力预测的平均相对误差分别为1. 13%和1. 26%,远小于其他预测方法,说明所建立的模型预测精度高,具有较强的泛化能力。 展开更多
关键词 钻削力 预测 支持向量 支持向量回归
在线阅读 下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:6
20
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量回归 灰狼优化算法
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部