期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于粗集数据分析的船型方案模糊优选法 被引量:2
1
作者 张维英 林焰 纪卓尚 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第4期434-439,共6页
利用粗集理论,对多个船型方案的数据进行分析,消除冗余的属性、简化决策的目标;然后利用模糊模式识别理论与模糊关系优选理论,建立多目标多层次模糊优选模型,以n个决策的目标特征值作为最低层次的输入,依次以低层次的输出作为高层次的输... 利用粗集理论,对多个船型方案的数据进行分析,消除冗余的属性、简化决策的目标;然后利用模糊模式识别理论与模糊关系优选理论,建立多目标多层次模糊优选模型,以n个决策的目标特征值作为最低层次的输入,依次以低层次的输出作为高层次的输入,对每一层次的单元系统进行优选计算,最后用级别向量的特征值对各个船型方案进行排序,从中选择最优的船型方案.算例说明:模型建立正确、计算结果可信、各个方案的综合评判值离散性大.这一方法为合理选择船型方案提供了参考. 展开更多
关键词 粗集数据分析 多目标多层次 船型 模糊优选
在线阅读 下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
2
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部