期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
RGNE:粗糙粒化的网络嵌入式重叠社区发现方法 被引量:8
1
作者 赵霞 张泽华 +1 位作者 张晨威 李娴 《计算机研究与发展》 EI CSCD 北大核心 2020年第6期1302-1311,共10页
复杂网络社区挖掘作为近年的研究热点,重叠社区检测有重要的现实意义.传统社区发现方法将所有节点精确地划分到每一个子类中,形成非重叠划分.但硬划分方法较难处理含有不确定信息和噪声信息的复杂情况.而目前采用网络嵌入的方法进行重... 复杂网络社区挖掘作为近年的研究热点,重叠社区检测有重要的现实意义.传统社区发现方法将所有节点精确地划分到每一个子类中,形成非重叠划分.但硬划分方法较难处理含有不确定信息和噪声信息的复杂情况.而目前采用网络嵌入的方法进行重叠社区发现的研究较少,针对社区漂移和边界不确定的问题,提出了一种结合粗糙粒化的网络嵌入社区发现方法.通过网络嵌入获得融合结构信息和属性信息的节点表示,并将相似的节点映射到距离相近的低维连续的向量空间.然后,结合粗糙粒化的思想,考虑网络结构和节点上的多层次信息来处理社区边界上的不确定性区域,最终生成重叠社区.在网络公开数据集和人工数据集的实验结果都表明,提出的粗糙粒化的网络嵌入(network embedding based on rough granulation,RGNE)社区发现方法具有更高的精度,并可有效地处理不确定性网络的社区发现问题.最后,对影响实验效果的参数设置进行了详细讨论分析. 展开更多
关键词 社区发现 重叠社区 社区漂移 网络嵌入 粗糙粒化
在线阅读 下载PDF
多粒化模糊软粗糙集模型 被引量:4
2
作者 柳彦军 张晓霞 吴红萍 《计算机工程与应用》 CSCD 北大核心 2016年第21期49-56,133,共9页
为了扩大粗糙集理论的应用,特别是在模糊环境中的应用,基于模糊软集和模糊蕴涵算子,主要研究基于软模糊近似空间的乐观多粒化模糊软粗糙集模型。该模型将参数集根据客户的不同要求或目标进行重组,只选择若干相关参数集参与计算上、下近... 为了扩大粗糙集理论的应用,特别是在模糊环境中的应用,基于模糊软集和模糊蕴涵算子,主要研究基于软模糊近似空间的乐观多粒化模糊软粗糙集模型。该模型将参数集根据客户的不同要求或目标进行重组,只选择若干相关参数集参与计算上、下近似,这样定义的上、下近似不再由整个属性集决定,而是根据重组后的多个属性集一并生成,从而使结果更加符合实际需求。另外,还定义了乐观多粒化模糊软粗糙集模型的截集并讨论了其相关性质。最后给出了算例。 展开更多
关键词 模糊集 粗糙 模糊软集 粗糙 (I J)-乐观多模糊软粗糙
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部