期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
模糊粗糙数据模型:一种数据分析的新方法 被引量:7
1
作者 黄金杰 武俊峰 蔡云泽 《计算机学报》 EI CSCD 北大核心 2005年第11期1866-1874,共9页
提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识... 提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率. 展开更多
关键词 粗糙 粗糙数据模型 模糊聚类 数据挖掘 模糊粗糙数据模型
在线阅读 下载PDF
一种建立粗糙数据模型的监督模糊聚类方法 被引量:12
2
作者 黄金杰 李士勇 蔡云泽 《软件学报》 EI CSCD 北大核心 2005年第5期744-753,共10页
提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的... 提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的推定隶属度的概念,给出了将模糊聚类模型转化为粗糙数据模型的方法,从而设计出一种通过迭代计算使目标函数最小的两个必要条件方程来获取RDM模型的有效算法,将Kowalczyk方法的多维搜索过程变为以聚类数目为参数的一维搜索,极大地减少了寻优时间.与传统的粗糙集理论和Kowalczyk方法相比,提出的方法具有更好的数据概括能力和噪声数据处理能力.最后,通过不同的数据集实验测试,结果表明了该方法的有效性. 展开更多
关键词 粗糙数据模型 粗糙 监督模糊聚类 GK算法 推定隶属度
在线阅读 下载PDF
基于模糊粗糙模型的粗神经网络建模方法研究 被引量:5
3
作者 张东波 王耀南 黄辉先 《自动化学报》 EI CSCD 北大核心 2008年第8期1016-1023,共8页
提出一种基于模糊粗糙模型的粗神经网络建模(FRM_RNN_M)方法.该方法通过自适应G-K聚类实现输入输出积空间的模糊划分,进而在聚类数和约简属性搜索的基础上,提取优化的模糊粗糙模型(Fuzzy rough model,FRM),并在融合神经网络后实现粗神... 提出一种基于模糊粗糙模型的粗神经网络建模(FRM_RNN_M)方法.该方法通过自适应G-K聚类实现输入输出积空间的模糊划分,进而在聚类数和约简属性搜索的基础上,提取优化的模糊粗糙模型(Fuzzy rough model,FRM),并在融合神经网络后实现粗神经网络建模.分类实验表明,FRM_RNN_M的分类性能优于传统贝叶斯和LVQ方法,而且比单纯的FRM模型具有更强的综合决策能力,和传统的粗逻辑神经网络(Rough logic neural network,RLNN)相比,FRM_RNN_M方法建立的神经网络结构精简,收敛速度快,具有更强的泛化能力. 展开更多
关键词 粗糙 粗糙数据模型 粗神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部