期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于主成分分析与深度神经网络的快速噪声水平估计算法
被引量:
6
1
作者
徐少平
李崇禧
+2 位作者
林官喜
唐祎玲
胡凌燕
《电子学报》
EI
CAS
CSCD
北大核心
2019年第2期274-281,共8页
鉴于从噪声图像分解获得的原生图块集合的协方差矩阵前若干个特征值(按照升序排序)与图像噪声水平值具有强相关性,提出了一种基于主成分分析和深度神经网络的快速噪声水平估计算法.该算法首先选用原生图块集合协方差矩阵前若干个特征值...
鉴于从噪声图像分解获得的原生图块集合的协方差矩阵前若干个特征值(按照升序排序)与图像噪声水平值具有强相关性,提出了一种基于主成分分析和深度神经网络的快速噪声水平估计算法.该算法首先选用原生图块集合协方差矩阵前若干个特征值构成刻画图像噪声水平高低的特征矢量,然后在大量有代表性且已标定噪声水平值的噪声图像集合上利用深度神经网络训练预测模型以实现将特征矢量直接映射为噪声水平值,最后为获得更高的预测准确性,采用粗精预测模型相结合的两步预测方式实现.实验表明:文中算法在各个噪声级别上都具有稳定的预测准确性,且执行效率非常高,作为降噪算法的前置预处理模块具有更好的综合优势.
展开更多
关键词
图像降噪
噪声水平估计
主成分分析
深度神经网络
粗精结合策略
在线阅读
下载PDF
职称材料
题名
基于主成分分析与深度神经网络的快速噪声水平估计算法
被引量:
6
1
作者
徐少平
李崇禧
林官喜
唐祎玲
胡凌燕
机构
南昌大学信息工程学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2019年第2期274-281,共8页
基金
国家自然科学基金(No.61662044
No.61163023
+2 种基金
No.81501560
No.51765042)
江西省自然科学基金(No.20171BAB202017)
文摘
鉴于从噪声图像分解获得的原生图块集合的协方差矩阵前若干个特征值(按照升序排序)与图像噪声水平值具有强相关性,提出了一种基于主成分分析和深度神经网络的快速噪声水平估计算法.该算法首先选用原生图块集合协方差矩阵前若干个特征值构成刻画图像噪声水平高低的特征矢量,然后在大量有代表性且已标定噪声水平值的噪声图像集合上利用深度神经网络训练预测模型以实现将特征矢量直接映射为噪声水平值,最后为获得更高的预测准确性,采用粗精预测模型相结合的两步预测方式实现.实验表明:文中算法在各个噪声级别上都具有稳定的预测准确性,且执行效率非常高,作为降噪算法的前置预处理模块具有更好的综合优势.
关键词
图像降噪
噪声水平估计
主成分分析
深度神经网络
粗精结合策略
Keywords
image denoising
noise level estimation
principal component analysis
deep neural network
coarse-to-fine strategy
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于主成分分析与深度神经网络的快速噪声水平估计算法
徐少平
李崇禧
林官喜
唐祎玲
胡凌燕
《电子学报》
EI
CAS
CSCD
北大核心
2019
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部