期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
粒群算法在雷达优化组网中的应用研究 被引量:14
1
作者 刘以安 孟现海 +1 位作者 杨华明 唐霜天 《兵工学报》 EI CAS CSCD 北大核心 2007年第5期547-550,共4页
为了利用有限的雷达资源对要求防御的区域进行合理、有效的布站,本文从雷达网要求的防御区域出发,依据各部雷达对防御区域覆盖的贡献,建立雷达网满足覆盖的连续性和严密性要求的最优目标函数,然后应用粒群算法对每部雷达随机产生一组粒... 为了利用有限的雷达资源对要求防御的区域进行合理、有效的布站,本文从雷达网要求的防御区域出发,依据各部雷达对防御区域覆盖的贡献,建立雷达网满足覆盖的连续性和严密性要求的最优目标函数,然后应用粒群算法对每部雷达随机产生一组粒子,在可行解空间中搜索各部雷达位置的候选解。同时,建立一协调器,协调各部雷达的候选位置,使整个雷达网的布站满足全局最优。仿真结果表明,该方法是有效、可行的。 展开更多
关键词 雷达工程 雷达网 粒群算法 优化布站
在线阅读 下载PDF
交叉粒群算法在无人机航路规划中的应用 被引量:16
2
作者 倪天权 王建东 刘以安 《系统工程与电子技术》 EI CSCD 北大核心 2011年第4期806-810,共5页
随着现代战场环境的日益复杂和作战范围的不断扩大,给无人机(unmanned aerial vehicle,UAV)执行空中侦察、监视、作战等任务带来了严重挑战。为了提高UAV的作战效率和生存概率,从UAV的威胁空间建模出发,根据战场分布的威胁区域,先利用... 随着现代战场环境的日益复杂和作战范围的不断扩大,给无人机(unmanned aerial vehicle,UAV)执行空中侦察、监视、作战等任务带来了严重挑战。为了提高UAV的作战效率和生存概率,从UAV的威胁空间建模出发,根据战场分布的威胁区域,先利用威胁回避技术快速地给出一条从起始点到目标点的粗选航路;然后在此基础上,应用粒群算法和遗传算法中交叉和变异操作相结合的思想,对粗选规划航路进行全局优化,从而找出一条能确保自身安全并威胁代价最小的最优飞行航路。仿真结果说明,该方法是有效、可行的。 展开更多
关键词 航路规划 威胁回避 粒群算法 无人机
在线阅读 下载PDF
基于粒子迁徙的粒群优化算法及其在岩土工程中的应用 被引量:22
3
作者 常晓林 喻胜春 +1 位作者 马刚 周伟 《岩土力学》 EI CAS CSCD 北大核心 2011年第4期1077-1082,共6页
受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免... 受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免早熟收敛。基准测试函数的计算结果表明,MPSO算法的性能优于其他几种改进算法。堆石体幂函数流变模型,参数较多,具有很强的非线性,将MPSO算法应用到堆石体幂函数流变模型的参数反演中。计算结果表明,利用反演的流变模型参数计算的坝体流变变形与实测变形在发展规律和数值上均比较吻合,证明MPSO算法在多参数、强非线性的复杂模型参数反演中的优越性。 展开更多
关键词 流变模型 参数反演 粒群优化算法 粒子迁徙 自适应变异
在线阅读 下载PDF
一种新的基于粒群优化的BP网络学习算法 被引量:15
4
作者 宋乃华 邢清华 《计算机工程》 CAS CSCD 北大核心 2006年第14期181-183,共3页
标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全... 标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全局寻优策略,使网络以更快的速度收敛至全局最优解,且更易于编程实现。仿真实例证明,该算法是一种简洁高效的BP神经网络学习算法,有着极为广泛的应用前景。 展开更多
关键词 多层感知器 BP算法 粒群优化 粒群学习算法
在线阅读 下载PDF
使用稳态系统和粒群优化算法进行基因调控网络推断 被引量:1
5
作者 应文豪 王士同 《计算机应用与软件》 CSCD 2009年第3期210-213,共4页
基因调控网络模型试图从海量的时序基因表达数据中研究基因的功能,推断基因之间的调控关系,从而揭示复杂的病理现象和生命现象。通过利用时序基因表达数据来推断一个基于稳态系统(S-system)模型的基因网络,提出使用粒群优化算法(PSO)来... 基因调控网络模型试图从海量的时序基因表达数据中研究基因的功能,推断基因之间的调控关系,从而揭示复杂的病理现象和生命现象。通过利用时序基因表达数据来推断一个基于稳态系统(S-system)模型的基因网络,提出使用粒群优化算法(PSO)来优化模型参数,从而捕捉基因表达数据中的动力学特性。实验结果表明,该方法能够使模型参数快速得到收敛,配置参数后模型仿真能力好,可以较好地识别基因调控关系。 展开更多
关键词 稳态系统 基因调控网络 粒群优化算法
在线阅读 下载PDF
基于粒群优化的图像有序盲分离算法
6
作者 王荣杰 詹宜巨 +1 位作者 周海峰 陈美谦 《中国航海》 CSCD 北大核心 2013年第4期1-6,20,共7页
针对图像的有序盲分离技术,提出一种基于粒子群优化的盲源抽取方法。该方法首先根据图像信号的高阶统计特性构造用于估计分离向量的目标函数,然后通过改进的粒子群算法优化该函数,获得最佳分离向量,并实现图像信号的逐次恢复。仿真实验... 针对图像的有序盲分离技术,提出一种基于粒子群优化的盲源抽取方法。该方法首先根据图像信号的高阶统计特性构造用于估计分离向量的目标函数,然后通过改进的粒子群算法优化该函数,获得最佳分离向量,并实现图像信号的逐次恢复。仿真实验结果表明,该方法不仅能依四阶累积量的绝对值降序地实现图像信号的盲分离,还能同时分离服从超高斯分布的语音信号和服从亚高斯分布的图像信号。 展开更多
关键词 船舶、舰船工程 粒群优化算法 盲分离 图像信号 超高斯分布 亚高斯分布
在线阅读 下载PDF
基于遗传粒群路径优化的网络拥塞控制方法 被引量:2
7
作者 孔金生 胡合伟 王娜娜 《计算机工程与应用》 CSCD 北大核心 2009年第15期144-146,共3页
将粒群和遗传算法相融合,提出了基于遗传粒群路径优化的网络拥塞控制方法,该方法在满足带宽、时延、费用多项QoS指标的条件下对负载进行路径优化,以负载均衡分布函数和资源消耗函数作为优化目标,旨在消耗尽可能少的网络资源的同时,也使... 将粒群和遗传算法相融合,提出了基于遗传粒群路径优化的网络拥塞控制方法,该方法在满足带宽、时延、费用多项QoS指标的条件下对负载进行路径优化,以负载均衡分布函数和资源消耗函数作为优化目标,旨在消耗尽可能少的网络资源的同时,也使网络负载的分布尽量均衡,从而避免网络拥塞。仿真结果表明该方法的有效性和可靠性。 展开更多
关键词 遗传粒群算法 QOS路由 路径优化 网络拥塞控制
在线阅读 下载PDF
高堆石坝瞬变-流变参数三维全过程联合反演方法及变形预测 被引量:30
8
作者 马刚 常晓林 +1 位作者 周伟 花俊杰 《岩土力学》 EI CAS CSCD 北大核心 2012年第6期1889-1895,共7页
利用反演分析得到的参数进行高面板坝的应力、变形分析来预测长期变形。由于堆石坝的施工过程和变形机制比较复杂,很难将瞬时变形和流变变形分开,因此,有必要对静力本构模型参数和流变模型参数进行综合反演。利用实测位移资料,以对堆石... 利用反演分析得到的参数进行高面板坝的应力、变形分析来预测长期变形。由于堆石坝的施工过程和变形机制比较复杂,很难将瞬时变形和流变变形分开,因此,有必要对静力本构模型参数和流变模型参数进行综合反演。利用实测位移资料,以对堆石坝变形较敏感的静力本构模型和流变模型参数为待反演参数,采用基于粒子迁徙的粒子群算法和径向基函数神经网络构建参数反演平台,该方法克服了粒子群算法易陷入局部最优和早熟收敛的缺点,采用经过训练的神经网络来描述模型参数和位移之间的映射关系,节省了参数反演的计算时间。对水布垭高面板坝的反演结果表明,基于反演参数的沉降计算值与实测值吻合得很好,坝体变形在合理范围以内并趋于稳定。 展开更多
关键词 堆石坝 参数反演 变形预测 改进粒群算法 RBF神经网络 双屈服面模型
在线阅读 下载PDF
考虑车内振动的动力总成悬置系统多目标优化 被引量:5
9
作者 陈剑 史韦意 +3 位作者 蒋丰鑫 曾维俊 沈忠亮 汪一峰 《中国机械工程》 EI CAS CSCD 北大核心 2015年第8期1129-1135,共7页
以实际工况下的测试数据为基础,建立了简化的车内振动传递路径分析模型。在此基础上,以发动机悬置刚度为设计变量,综合考虑悬置系统能量解耦和车内振动,建立了基于灰色粒子群优化算法的多目标优化模型。并以某型卡车为例,进行了多目标... 以实际工况下的测试数据为基础,建立了简化的车内振动传递路径分析模型。在此基础上,以发动机悬置刚度为设计变量,综合考虑悬置系统能量解耦和车内振动,建立了基于灰色粒子群优化算法的多目标优化模型。并以某型卡车为例,进行了多目标优化求解。实验和优化结果表明,在得到较好能量解耦的同时,降低了车内振动,实现了能量解耦和车内低振动的优化匹配。 展开更多
关键词 动力总成悬置系统 传递路径分析 灰色粒群算法 蒙特卡罗法
在线阅读 下载PDF
连铸计划优化模型研究 被引量:2
10
作者 朱俊 杜斌 +3 位作者 金再柯 赵伟忠 林云 易剑 《控制工程》 CSCD 2006年第S2期84-86,99,共4页
介绍了宝钢开发的连铸计划优化系统的建模、优化及计划生成等方面的技术。针对传统连铸计划编制方式的特点和问题,连铸计划优化模型系统采用基于模型的建模技术,大量应用现代优化方法,在不增加任何硬件投入的情况下,可以大幅度地改善计... 介绍了宝钢开发的连铸计划优化系统的建模、优化及计划生成等方面的技术。针对传统连铸计划编制方式的特点和问题,连铸计划优化模型系统采用基于模型的建模技术,大量应用现代优化方法,在不增加任何硬件投入的情况下,可以大幅度地改善计划的质量,明显提高计划的科学性和全局性。与过去的计算机辅助人工计划系统相比,可以产生较大的经济效益和降低生产管理难度,并且具有人工所无法比拟的灵活性,大大地减低计划调度人员的工作强度。 展开更多
关键词 优化 遗传算法 粒群算法
在线阅读 下载PDF
基于PSO和分组训练的SVM参数快速优化方法 被引量:17
11
作者 张庆 刘丙杰 《科学技术与工程》 2008年第16期4613-4616,共4页
针对在利用粒群优化算法(PSO)对支持向量机(SVM)参数进行优化时,由于SVM训练运算量较大,导致需多次迭代过程的参数优化速度缓慢的问题。引入分组训练方法,将训练样本分成若干样本子集分别进行训练,然后对经分组训练得到的各个SVM的参数... 针对在利用粒群优化算法(PSO)对支持向量机(SVM)参数进行优化时,由于SVM训练运算量较大,导致需多次迭代过程的参数优化速度缓慢的问题。引入分组训练方法,将训练样本分成若干样本子集分别进行训练,然后对经分组训练得到的各个SVM的参数进行优化。在提高了训练速度的同时,大幅提高了参数优化速度,并对分类SVM的参数优化进行了仿真实验,取得了良好的优化效果。 展开更多
关键词 支持向量机 粒群算法 参数优化 训练样本
在线阅读 下载PDF
孤岛风柴蓄复合发电功率粒子群优化分配研究 被引量:6
12
作者 许昌 李旻 +2 位作者 任岩 刘德有 郑源 《电力系统保护与控制》 EI CSCD 北大核心 2013年第11期85-92,共8页
利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应... 利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应用改进的粒子群优化方法对孤岛风柴蓄复合发电的风力发电机组台数、柴油机台数和蓄电池容量进行优化设计,优化中采用度电成本最小作为目标,最小失电率作为约束条件,能量调度按照首先应用可再生能源发电,其次是蓄电池电量,最后调用柴油机发电的策略。结果显示,改进优化方法的效率比基本的粒子群优化算法稍低,但是可以得到更加优化的结果。进一步分析了当柴油价格、负荷、蓄电池价格和风力发电机成本变化后,优化出新的风力发电机、柴油发电机和蓄电池配置,分析了优化配置变化的原因。研究可以为在孤立海岛采用风柴蓄复合发电蓄电的设计提供参考。 展开更多
关键词 孤立海岛 风力发电 柴油机 粒群优化算法
在线阅读 下载PDF
Inversion of self-potential anomalies caused by simple polarized bodies based on particle swarm optimization 被引量:9
13
作者 LUO Yi-jian CUI Yi-an +2 位作者 XIE Jing LU He-shun-zi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1797-1812,共16页
Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard... Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems. 展开更多
关键词 SELF-POTENTIAL INVERSION particle swarm optimization
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:16
14
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
15
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
16
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Dynamic formation control for autonomous underwater vehicles 被引量:6
17
作者 燕雪峰 古锋 +2 位作者 宋琛 胡晓琳 潘毅 《Journal of Central South University》 SCIE EI CAS 2014年第1期113-123,共11页
Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which... Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles(AUVs) to collaborate with each other.In this work,a dynamic formation model was proposed,in which several algorithms were developed for the complex underwater environment.Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes.Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles.Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation.The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated.Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness,even with a concave obstacle.It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle. 展开更多
关键词 formation control path plan keep formation dynamic strategy
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
18
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
Multi-objective optimization for leaching process using improved two-stage guide PSO algorithm 被引量:8
19
作者 胡广浩 毛志忠 何大阔 《Journal of Central South University》 SCIE EI CAS 2011年第4期1200-1210,共11页
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ... A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively. 展开更多
关键词 leaching process MODELING multi-objective optimization two-stage guide EXPERIMENT
在线阅读 下载PDF
Improving performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms 被引量:2
20
作者 Kamyar TOLOUEI Ehsan MOOSAVI +2 位作者 Amir Hossein BANGIAN TABRIZI Peyman AFZAL Abbas AGHAJANI BAZZAZI 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2479-2493,共15页
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ... One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach. 展开更多
关键词 open-pit mine long-term production scheduling grade uncertainty augmented Lagrangian relaxation particle swarm optimization algorithm bat algorithm
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部