期刊文献+
共找到1,474篇文章
< 1 2 74 >
每页显示 20 50 100
基于扩展记忆粒子群-支持向量回归的短期电力负荷预测 被引量:14
1
作者 段其昌 曾勇 +2 位作者 黄大伟 段盼 刘顿 《电力系统保护与控制》 EI CSCD 北大核心 2012年第2期40-44,共5页
为了快速准确高效地预测短期电力负荷,提出了一种带扩展记忆的粒子群优化技术(PSOEM)和支持向量回归(SVR)相结合,以历史负荷数据、气象因素等作为输入的基于PSOEM-SVR的短期电力负荷预测方法。PSOEM比传统PSO收敛速度更快精度更高具有... 为了快速准确高效地预测短期电力负荷,提出了一种带扩展记忆的粒子群优化技术(PSOEM)和支持向量回归(SVR)相结合,以历史负荷数据、气象因素等作为输入的基于PSOEM-SVR的短期电力负荷预测方法。PSOEM比传统PSO收敛速度更快精度更高具有更强的寻优能力,用它来优化组合核函数SVR参数,减少了SVR参数设置的盲目低效性,获得较优的PSOEM-SVR预测模型。该模型的实例仿真预测结果表明该方法比BP神经网络具有更好的准确性和稳定性,平均绝对误差控制在1%以内。 展开更多
关键词 扩展记忆 粒子优化 支持向量回归 短期负荷预测
在线阅读 下载PDF
低温雨雪过程的粒子群-支持向量回归预报方法 被引量:2
2
作者 孔庆燕 陆虹 +2 位作者 金龙 周秀华 史旭明 《自然灾害学报》 CSCD 北大核心 2019年第5期125-133,共9页
低温雨雪冰冻灾害是多种气象要素在同时段、同区域相互配合迭加影响而形成的,具有显著的非线性、时变性特征,预报难度很大。为此首先采用逐步回归与核主成分分析相结合的因子特征提取构建模型的输入矩阵。进一步采用粒子群算法对支持向... 低温雨雪冰冻灾害是多种气象要素在同时段、同区域相互配合迭加影响而形成的,具有显著的非线性、时变性特征,预报难度很大。为此首先采用逐步回归与核主成分分析相结合的因子特征提取构建模型的输入矩阵。进一步采用粒子群算法对支持向量回归预报模型的相关参数进行优化,以华南广西区域持续性低温雨雪冰冻天气过程的冷湿指数作为预报对象,建立粒子群-非线性支持向量回归预报模型(PSO-SVR)。由独立样本对比预报试验结果表明,在建模样本相同、预报因子相同的条件下,粒子群-支持向量回归预报模型对严重过程和一般过程低温雨雪天气过程冷湿指数的独立样本预报平均绝对误差分别为7.39和7.65;而相应的回归预报方程对这两种过程的独立样本预报平均绝对误差分别为11.18和7.94,显示了PSO-SVR预报模型的预报误差明显小于一般的线性回归方法。 展开更多
关键词 低温雨雪 冷湿指数 粒子算法 非线性支持向量回归 核主成分分析
在线阅读 下载PDF
基于群智能算法优化支持向量回归的挤压性围岩隧道变形预测
3
作者 徐剑波 姚天宇 +2 位作者 王力 朱颂阳 罗学东 《地质科技通报》 北大核心 2025年第5期317-326,共10页
隧道工程中,隧道设计和施工安全的前提是准确评估隧道围岩变形量。将萤火虫算法(FA)、鲸鱼优化算法(WOA)和灰狼优化算法(GWO)与优化支持向量回归(SVR)结合起来,并基于此构建了3种混合群智能优化预测模型,以预测挤压性围岩隧道变形量。... 隧道工程中,隧道设计和施工安全的前提是准确评估隧道围岩变形量。将萤火虫算法(FA)、鲸鱼优化算法(WOA)和灰狼优化算法(GWO)与优化支持向量回归(SVR)结合起来,并基于此构建了3种混合群智能优化预测模型,以预测挤压性围岩隧道变形量。构建了一个包含62个样本的数据库,选取了7种隧道及围岩初始参数作为预测模型输入参数,将隧道径向变形量作为输出量。选择决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)模型预测效果的评价指标。最后,使用归一化互信息法评估不同输入参数对隧道围岩变形预测结果的影响。研究结果表明,FA-SVR模型在训练阶段和测试阶段的预测性能优于GWO-SVR模型和WOA-SVR模型,训练集和测试集对应的R^(2)分别为0.9634和0.9648,RMSE分别为18.786和14.699,MAE分别为9.460和11.170,预测能力排序为:FA-SVR>WOA-SVR>GWO-SVR。萤火虫算法、鲸鱼优化算法和灰狼优化算法均能提高支持向量回归模型的预测性能,FA-SVR模型的预测效果最好,经过优化的混合预测模型性能显著优于经典模型。敏感性分析表明,节理密度是影响隧道围岩变形预测值的最重要参数。研究成果可为隧道工程安全控制提供重要参考。 展开更多
关键词 挤压性围岩隧道 变形预测 智能优化算法 支持向量回归 归一化互信息
在线阅读 下载PDF
基于粒子群算法优化支持向量回归的电火花加工工艺指标预测模型 被引量:1
4
作者 寇鹏远 王伟 +3 位作者 刘建勇 罗学科 李殿新 张慧杰 《电加工与模具》 北大核心 2024年第5期21-25,30,共6页
基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.... 基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.302,决定性系数(R^(2))为0.994,较传统SVR模型(RMSE为0.577,R^(2)为0.981)有显著提升,验证了PSO算法优化SVR参数的有效性。对原始数据进行预处理,并基于优化后的数据训练PSO-SVR模型,结果显示:经过数据预处理的PSO-SVR模型在测试集上的RMSE进一步降至0.255,R^(2)提高至0.996,预测精度和泛化能力均得到增强。 展开更多
关键词 支持向量回归 粒子算法 电火花加工 工艺参数 表面粗糙度
在线阅读 下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类 被引量:2
5
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量 粒子算法 钢铁分类
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
6
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 民机客舱座椅 支持向量回归 粒子算法 舒适度评价预测
在线阅读 下载PDF
基于粒子群优化算法-支持向量回归算法的氨氮传感器温度补偿 被引量:8
7
作者 姜吉光 盛宇博 +3 位作者 常川 石磊 苏成志 李鑫 《科学技术与工程》 北大核心 2021年第21期8983-8988,共6页
针对野外低温环境下,基于铵离子选择性电极的氨氮传感器检测失准问题,通过分析传感器检测原理,在0~30℃进行了水质标样氨氮检测对比实验,探究了温度变化对氨氮传感器输出结果的影响;将粒子群优化算法(particle swarm optimization,PSO)... 针对野外低温环境下,基于铵离子选择性电极的氨氮传感器检测失准问题,通过分析传感器检测原理,在0~30℃进行了水质标样氨氮检测对比实验,探究了温度变化对氨氮传感器输出结果的影响;将粒子群优化算法(particle swarm optimization,PSO)与支持向量回归(support vector regression,SVR)结合,建立了氨氮检测的PSO-SVR温度补偿模型,并与最小二乘多项式回归、传统SVR建立的温度补偿模型对比,PSO-SVR温度补偿模型具有较高的决定系数和较小均方根误差(root mean square error,RMSE)。在实际水样检测实验中,经过该模型补偿后氨氮传感器的输出值与实验室内根据《水质氨氮测定》(HJ 535—2009)测得的氨氮标准值之间最高偏差为4.76%,最低偏差为0.64%,偏差范围符合预期补偿目标,表明模型具有较高的温度补偿精度,对非训练数据具有良好的泛化能力,能够满足实际使用的精度要求。 展开更多
关键词 氨氮 铵离子选择性电极 温度补偿 粒子优化算法(PSO) 支持向量回归(SVR)
在线阅读 下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测 被引量:4
8
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
在线阅读 下载PDF
基于粒子群优化-支持向量回归的高速公路短时交通流预测 被引量:22
9
作者 邹宗民 郝龙 +2 位作者 李全杰 陈宏俊 康乐 《科学技术与工程》 北大核心 2021年第12期5118-5123,共6页
为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型。首先,对获取的高速公路交通流数据... 为实现高速公路短时非线性交通流的精准预测,依托高速公路运营积累的大量数据资源,构建了基于粒子群优化(particle swarm optimization,PSO)的支持向量回归(support vector regression,SVR)预测模型。首先,对获取的高速公路交通流数据进行异常值剔除、缺失值填充以及归一化等预处理;其次,基于SVR算法采用滑动窗口的方式建立预测模型,并基于具有较强寻优能力的PSO优化算法获取SVR模型的最优参数组合;最后,通过京台高速济南西收费站断面交通流数据进行实例验证。模型的预测结果表明,所提出的高速公路短时交通流预测模型能够满足实际需求,且相较反向传播(back propagation,BP)、差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)模型具有较高的准确性,可为日后高速公路运营决策提供理论支持。 展开更多
关键词 高速公路 交通流预测 粒子优化 支持向量回归
在线阅读 下载PDF
基于粒子群优化-支持向量回归的变压器绕组温度软测量模型 被引量:34
10
作者 彭道刚 陈跃伟 +1 位作者 钱玉良 黄超 《电工技术学报》 EI CSCD 北大核心 2018年第8期1742-1749,1761,共9页
针对变压器绕组热点温度测量问题,建立一种基于粒子群优化-支持向量回归算法的变压器绕组热点温度软测量模型,并验证此模型的预测效果。利用基于被动聚集的改进粒子群优化(PSO)算法,优化支持向量机的支持向量回归(SVR)模型的参数组合,... 针对变压器绕组热点温度测量问题,建立一种基于粒子群优化-支持向量回归算法的变压器绕组热点温度软测量模型,并验证此模型的预测效果。利用基于被动聚集的改进粒子群优化(PSO)算法,优化支持向量机的支持向量回归(SVR)模型的参数组合,并且找到其最优解。充分考虑变压器运行的相关因素,对绕组热点温度软测量模型进行训练与学习,实现对难以直接测得的绕组热点温度的预测。通过对某市110kV变压器运行数据的训练和预测结果,并将其与BP神经网络和SVR方法的结果对比,证明所建模型具有较好的预测能力。 展开更多
关键词 变压器绕组 热点温度 粒子优化 支持向量回归
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
11
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
在线阅读 下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
12
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
在线阅读 下载PDF
基于云粒子群-最小二乘支持向量机的传感器温度补偿 被引量:30
13
作者 张朝龙 江巨浪 +3 位作者 李彦梅 陈世军 査长礼 王陈宁 《传感技术学报》 CAS CSCD 北大核心 2012年第4期472-477,共6页
针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的... 针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的参数进行优化选择,建立CMPSO-LSSVM传感器温度补偿模型。将该模型应用于振弦式传感器的温度补偿,通过实验证明了该温度补偿方法优于当前其他主要方法。 展开更多
关键词 云模型 粒子优化 最小二乘支持向量 温度补偿
在线阅读 下载PDF
基于粒子群-支持向量机的模拟电路故障诊断 被引量:24
14
作者 左磊 侯立刚 +2 位作者 张旺 旺金辉 吴武臣 《系统工程与电子技术》 EI CSCD 北大核心 2010年第7期1553-1556,共4页
针对传统神经网络技术在模拟电路故障应用中存在的问题,提出了一种基于粒子群算法(particle swarm optimization,PSO)和最小二乘支持向量机(least squares support vector machine,LSSVM)的模拟电路故障诊断的方法。该方法首先利用小波... 针对传统神经网络技术在模拟电路故障应用中存在的问题,提出了一种基于粒子群算法(particle swarm optimization,PSO)和最小二乘支持向量机(least squares support vector machine,LSSVM)的模拟电路故障诊断的方法。该方法首先利用小波包技术对待诊断电路的可测点信息提取故障特征,然后使用粒子群算法优化支持向量机的结构参数,避免了参数选择的盲目性,提高了模型的诊断精度。在对某滤波电路进行的故障检测中,验证了该方法的可行性。 展开更多
关键词 模拟电路 故障诊断 最小二乘支持向量 粒子算法
在线阅读 下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
15
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 步态分析 肌电信号 粒子优化 支持向量
在线阅读 下载PDF
粒子群优化的支持向量回归机计算配电网理论线损方法 被引量:34
16
作者 徐茹枝 王宇飞 《电力自动化设备》 EI CSCD 北大核心 2012年第5期86-89,93,共5页
针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理... 针对配电网理论线损精确计算,提出一种基于粒子群优化算法的支持向量回归机(SVR-PSO)的理论线损计算方法。SVR-PSO方法将理论线损计算抽象成多元回归分析,理论线损的若干影响因素作为自变量,理论线损值作为因变量,SVR-PSO通过对已知理论线损线路的数据样本训练学习生成配电网理论线损计算模型,进而利用该模型完成未知线路的理论线损计算。在SVR-PSO训练过程中,利用粒子群算法动态地搜索支持向量回归机的最优训练参数,提高了SVR-PSO的计算精度。最后横向对比实验证实了基于SVR-PSO的配电网理论线损计算方法的有效性,与传统方法相比,SVR-PSO方法在计算精度和运算耗时方面拥有更好的性能。 展开更多
关键词 配电网 线路 损耗 计算 粒子优化 多元回归分析 支持向量回归
在线阅读 下载PDF
基于支持向量回归机和粒子群算法的船舶操纵运动模型辨识 被引量:10
17
作者 张心光 邹早建 王岩松 《船舶力学》 EI CSCD 北大核心 2016年第11期1427-1432,共6页
基于仿真的Z形试验数据,应用支持向量回归机对船舶操纵运动响应模型进行了机理建模,从核函数结构中得到了模型中的操纵性指数,并利用建立的响应模型进行了Z形试验的运动预报,同时引入粒子群算法对惩罚因子C值进行寻优,以减少惩罚因子C... 基于仿真的Z形试验数据,应用支持向量回归机对船舶操纵运动响应模型进行了机理建模,从核函数结构中得到了模型中的操纵性指数,并利用建立的响应模型进行了Z形试验的运动预报,同时引入粒子群算法对惩罚因子C值进行寻优,以减少惩罚因子C值选择的任意性对船舶操纵运动模型辨识精度产生的不利影响。通过将运动预报结果同仿真试验数据进行比较,验证了文中方法的有效性。 展开更多
关键词 船舶操纵 响应模型 参数辨识 支持向量回归 粒子算法
在线阅读 下载PDF
基于粒子群优化的溶解氧质量浓度支持向量回归机 被引量:6
18
作者 安爱民 祁丽春 +2 位作者 丑永新 张浩琛 宋厚彬 《北京工业大学学报》 CAS CSCD 北大核心 2016年第9期1318-1323,共6页
针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取... 针对污水处理中溶解氧质量浓度无法在线精确测量的问题,提出基于粒子群算法优化支持向量回归机(PSO-SVR)的溶解氧质量浓度软测量模型.为了提高溶解氧的预测精度和效率,采用粒子群算法对支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间的非线性软测量模型,利用该软测量模型对国际基准仿真模型BSM1的溶解氧质量浓度进行预测.仿真结果表明:该模型能得到较好的预测效果,与SVR、RBF神经网络相比,PSO-SVR模型不仅计算复杂度低,而且收敛速度快,预测精度高,泛化能力强. 展开更多
关键词 溶解氧质量浓度 粒子算法 支持向量回归 污水处理 软测量
在线阅读 下载PDF
基于粒子群-支持向量机的时间序列分类诊断模型 被引量:7
19
作者 张涛 张明辉 +1 位作者 李清伟 张玥杰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1450-1457,共8页
构建一种基于粒子群算法-支持向量机(PSO-SVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据... 构建一种基于粒子群算法-支持向量机(PSO-SVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据.该方法在以下4个方面不同于其他已有相关研究工作:(1)构建基于自回归模型的脑区多维时间序列数据特征表示;(2)构建基于支持向量机模型的脑区多维时间序列数据分类机制;(3)构建基于粒子群算法的分类学习参数寻优策略;(4)建立融合上述特征表示、优化分类与参数优选模式的fMRI时间序列数据分类诊断模型.通过以精神抑郁症作为实证分析的具体案例,所提出分类诊断模型已取得良好实验效果,展示出其有效性与合理性. 展开更多
关键词 fMRI多维时间序列 分类诊断 回归模型 支持向量机(SVM) 粒子算法(PSO)
在线阅读 下载PDF
基于粒子群优化支持向量回归机的黄金价格预测模型 被引量:6
20
作者 王芬 马涛 马旭 《兰州理工大学学报》 CAS 北大核心 2013年第3期65-69,共5页
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的... 为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测. 展开更多
关键词 粒子算法 支持向量回归 黄金价格 参数优化 统计学习理论
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部