期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺
1
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
2
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子优化反向传播神经网络 神经网络集成
在线阅读 下载PDF
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:1
3
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于AHP-熵权法的正交试验和GA-BP神经网络优选关节止痛汤提取工艺
4
作者 白淑贤 王单单 +3 位作者 吴作敏 于晓涛 金少举 王瑞 《中国现代中药》 2025年第2期310-317,共8页
目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过... 目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过正交试验和遗传算法(GA)-反向传播(BP)神经网络法优选关节止痛汤的提取工艺参数,并对2种方法所得工艺参数进行验证比较。结果:正交试验所得最佳工艺参数为加水量6倍、提取时间0.5 h、提取3次,综合评分为90.21(RSD为1.38%);GA-BP神经网络优化得到的最佳工艺参数为加水量6倍、提取时间1.5 h、提取4次,综合评分为99.26(RSD为0.09%),结合实际生产需求,最终确定关节止痛汤的最佳提取工艺参数为加水量6倍、提取时间0.5 h、提取3次。结论:采用正交试验结合GA-BP神经网络所优选的提取工艺参数稳定、可靠,可为后续研发提供参考。 展开更多
关键词 关节止痛汤 层次分析法-熵权法 正交试验 遗传算法-反向传播神经网络
在线阅读 下载PDF
基于粒子群算法与反向传播神经网络的呼吸运动预测研究 被引量:1
5
作者 常盼春 杨济民 +1 位作者 杨娟 游涛 《中国生物医学工程学报》 CAS CSCD 北大核心 2018年第6期714-719,共6页
在放射治疗过程中,呼吸运动会造成某些器官组织如肺、肝的靶区发生变化,从而降低放疗的效果,并且加大对正常组织器官的伤害。因此,在放疗过程中对靶区进行呼吸运动的实时估计是一项非常必要的工作。由于具备较好的非线性拟合能力,优化... 在放射治疗过程中,呼吸运动会造成某些器官组织如肺、肝的靶区发生变化,从而降低放疗的效果,并且加大对正常组织器官的伤害。因此,在放疗过程中对靶区进行呼吸运动的实时估计是一项非常必要的工作。由于具备较好的非线性拟合能力,优化反向传播神经网络(BP-NN)已经被广泛应用于呼吸的预测,然而BP-NN容易陷入局部最优值。提出一种应用粒子群算法(PSO)优化BP-NN的方法减少陷入局部最优值的机率,提高呼吸运动预测的精度。首先,应用PSO算法寻找神经网络的最佳初始权值与阈值;然后,应用最优的初始权值与阈值建立神经网络(PSO-NN);最后,利用建立的PSO-NN网络进行呼吸预测。结果表明,11组肺癌病人呼吸运动预测实验对比结果表明,此算法(PSO-NN)相比单纯应用BP-NN算法的平均绝对误差由0.24减少到0.18(25%),互相关系数由0.82提高到0.86。所提出的算法可以有效地减少BP-NN陷入局部最优值的机率,提高预测的精度。 展开更多
关键词 呼吸预测 粒子算法 反向传播神经网络 放射治疗
在线阅读 下载PDF
基于帝国竞争反向传播神经网络的断块油田开发顺序优化
6
作者 徐庆岩 孙晓飞 +3 位作者 翟光华 王瑞峰 雷诚 张瑾琳 《石油地质与工程》 CAS 2024年第3期77-81,89,共6页
明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合... 明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合模糊评判法等,这些方法在选择评价指标和指标权重上带有较强的主观性,无法做到完全客观的评价。因此本文提出一种基于帝国竞争算法改进的反向传播神经网络模型,首先采用Spearman相关系数法确定影响断块油田开发的主控因素,其次使用分段三次Hermite插值方法实现断块油田群开发数据库的扩充,最后在扩充后的大量数据库训练样本的基础上,基于帝国竞争算法改进的反向传播神经网络模型可以确定影响开发效果参数的权重并预测断块油田群中各断块油田的净现值,根据净现值大小可以确定每个断块的开发顺序。该方法以实际断块油田群的地质油藏数据库作为评价依据,断块油田的开发顺序更加的科学合理,项目整体的净现值也明显高于依靠传统方法确定的开发顺序组合,避免了人为主观性,也节省了数值模拟和经济评价的工作量,克服了现有方法的局限性,对于提高断块油田群开发综合效益具有重要意义。 展开更多
关键词 帝国竞争算法 反向传播神经网络 开发参数权重 投产顺序优化 断块油田 净现值
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
7
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
基于粒子群优化算法优化反向传播神经网络构建冷藏草鱼新鲜度的近红外光谱预测模型 被引量:4
8
作者 张沁宇 胡志刚 +4 位作者 徐子健 王子豪 蒋亚军 付丹丹 陈艳 《食品安全质量检测学报》 CAS 北大核心 2023年第22期200-209,共10页
目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用... 目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用x-y距离结合的样本划分(samplesetpartitioningbasedonjointx-y distance,SPXY)方法进行数据集的划分,并采用正交信号校正法(orthogonalsignalcorrection,OSC)、Savitzky-Golay(SG)、一阶导数及其组合算法进行光谱预处理。再运用竞争性自适应重加权采样(competitive adaptivereweightedsampling,CARS)、连续投影算法(successiveprojectionsalgorithm,SPA)、主成分分析(principal component analysis, PCA)对光谱变量进行选择和降维。最后结合偏最小二乘回归(partial least squares regression,PLSR)、反向传播(backpropagation,BP)神经网络和粒子群优化算法(particleswarmoptimization,PSO)优化BP神经网络(PSO-BP),建立草鱼(Ctenopharyngodonidella)片新鲜度定量预测模型。结果 各线性和非线性模型均得到了良好的预测效果,预测集相关系数均超过了0.95。PLSR表现较为稳定, BP神经网络虽提高了校正集预测性能,但是预测集性能不如PLSR。PSO-BP既保证了校正集预测性能,也提高了预测集性能。基于OSC+D1预处理和CARS变量选择后的PSO-BP模型性能最优(R2P=0.987,预测集的均方根误差为0.108,相对分析误差为7.778)。结论 基于PSO-BP算法和近红外光谱的定量预测模型可以很好地预测冷藏鱼肉的新鲜度指标。 展开更多
关键词 近红外光谱 冷藏 草鱼 新鲜度 总挥发性盐基氮 粒子优化算法 反向传播神经网络 正交信号校正法
在线阅读 下载PDF
对比研究响应面法和BP神经网络-粒子群算法优化调理松板肉加工工艺 被引量:10
9
作者 胡欣颖 李洪军 +3 位作者 李少博 曾令英 李俊宏 贺稚非 《食品与发酵工业》 CAS CSCD 北大核心 2019年第24期179-187,共9页
为优化调理松板肉加工工艺,提升松板肉品质,采用超声-真空协同处理以提升肉的质构特性和成品率。在单因素的基础上,应用Box-Behnken试验设计,对比分析响应面法和BP神经网络-粒子群算法对调理松板肉成品率的影响。试验结果表明,响应面法... 为优化调理松板肉加工工艺,提升松板肉品质,采用超声-真空协同处理以提升肉的质构特性和成品率。在单因素的基础上,应用Box-Behnken试验设计,对比分析响应面法和BP神经网络-粒子群算法对调理松板肉成品率的影响。试验结果表明,响应面法优化的超声-真空协同处理最佳工艺为液肉百分比48.10%、超声功率246.04 W、真空度61.11 kPa,成品率理论预测值为94.82%,验证值为92.84%,相对误差值为2.09%。BP神经网络-粒子群算法分析的最佳工艺为液肉百分比51.00%、超声功率235.36 W、真空度66.11 kPa,成品率理论预测值为95.48%,验证值为94.96%,相对误差值为0.54%。BP神经网络-粒子群算法优化出的成品率更高,误差更小,说明该方法在食品加工领域应用前景更广阔,同时也为食品研究提供了新思路。 展开更多
关键词 调理肉制品 超声-真空协同处理 响应面法 BP神经网络 粒子算法
在线阅读 下载PDF
基于PSO-BP神经网络算法矿井瓦斯涌出量回归预测应用
10
作者 刘大可 张浩强 郭翔 《中国矿山工程》 2024年第3期38-43,共6页
本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络... 本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络算法的平均绝对误差、均方误差、均方根误差、平均绝对百分比误差和预测准确率等评价指标。结果表明,基于PSO-BP神经网络算法的瓦斯涌出量预测模型具有更高的准确性,能够满足矿山实际需求,具有较好的实用性和创新性,为其他矿井在瓦斯涌出量预测方面提供了一定的借鉴意义。 展开更多
关键词 瓦斯涌出量预测 粒子优化算法 反向传播神经网络 回归预测 评价指标
在线阅读 下载PDF
基于蚁群算法的多层前馈神经网络 被引量:68
11
作者 洪炳熔 金飞虎 高庆吉 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2003年第7期823-825,共3页
反向传播算法是神经网络中应用广泛的一种多层前馈神经网络模型。但算法有求解精度低、搜索速度慢、易于陷入极小的缺点。蚁群算法是一种新型的模拟进化算法,有正反馈、分布式计算、启发性收敛等特性。这些特性使得解题过程加快,易于实... 反向传播算法是神经网络中应用广泛的一种多层前馈神经网络模型。但算法有求解精度低、搜索速度慢、易于陷入极小的缺点。蚁群算法是一种新型的模拟进化算法,有正反馈、分布式计算、启发性收敛等特性。这些特性使得解题过程加快,易于实现分布式计算。将蚁群算法和神经网络相结合起来,实现了非线性模型的辨识问题及倒立摆的控制。仿真实验表明:用蚁群算法训练神经网络,可兼有神经网络广泛映射能力和蚁群算法快速全局收敛的性能。 展开更多
关键词 算法 多层前馈神经网络 反向传播算法 非线性系统 倒立摆 收敛性 映射能力 网络训练
在线阅读 下载PDF
基于粒子群改进神经网络的舰艇磁场推算模型 被引量:4
12
作者 连丽婷 肖昌汉 +1 位作者 杨明明 周国华 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第6期809-813,共5页
针对目前线性建模解决舰艇内外磁场推算问题时存在的困难,从非线性优化的角度出发,建立了内外磁场之间的误差反向传播神经网络预报模型.为了改善网络的固有缺陷,利用粒子群算法优化网络的初始权值与阈值,使其能够逃离局部最优点,增强了... 针对目前线性建模解决舰艇内外磁场推算问题时存在的困难,从非线性优化的角度出发,建立了内外磁场之间的误差反向传播神经网络预报模型.为了改善网络的固有缺陷,利用粒子群算法优化网络的初始权值与阈值,使其能够逃离局部最优点,增强了网络的鲁棒性.该方法避免了利用线性化方法存在的诸多困难,可实现舰艇内外磁场推算.利用船模实验对网络预测的准确性进行了验证,结果表明其换算精度较线性方法有所提高,满足工程实际需求. 展开更多
关键词 舰艇 磁场 闭环消磁 粒子算法 误差反向传播
在线阅读 下载PDF
基于粒子群算法优化BP神经网络的PID控制算法 被引量:11
13
作者 曾雄飞 《电子设计工程》 2022年第11期69-73,78,共6页
传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propag... 传统比例-积分-微分(Proportion Integral Derivative,PID)控制器存在参数整定困难,不能在线实时调整以及面对复杂非线性系统时应用效果不佳等问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)优化的反向传播(Back Propagation,BP)神经网络PID控制方法。将BP神经网络与PID控制器相结合,利用BP神经网络的自适应学习能力在线实时调整PID控制参数,提升系统稳定性,针对BP-PID自学习过程中容易陷入局部极小值问题,利用改进的PSO算法对其进行优化,确保BP-PID系统收敛于全局最优解。基于仿真数据开展实验,结果表明,所提方法能够有效提升系统的控制精度和控制稳定度。 展开更多
关键词 比例-积分-微分控制器 神经网络 模型优化 粒子算法
在线阅读 下载PDF
基于改进反向传播神经网络代理模型的快速多目标天线设计 被引量:9
14
作者 董健 钦文雯 +2 位作者 李莹娟 李茜茜 邓联文 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2712-2719,共8页
针对传统天线设计方法计算代价较大的缺陷,该文构建基于反向传播神经网络(BPNN)的新型天线代理模型。为解决BPNN训练易陷入局部最优的问题,采用粒子群优化(PSO)算法来改善神经网络初始结构参数,进而构建PSO-BPNN天线代理模型,并基于该... 针对传统天线设计方法计算代价较大的缺陷,该文构建基于反向传播神经网络(BPNN)的新型天线代理模型。为解决BPNN训练易陷入局部最优的问题,采用粒子群优化(PSO)算法来改善神经网络初始结构参数,进而构建PSO-BPNN天线代理模型,并基于该模型提出多参数天线结构的快速多目标设计方法。设计实例表明,该方法在预测精度以及计算代价等方面优于现有的常用天线设计方法。所提方法对处理复杂高维参数空间天线设计问题具有实用价值。 展开更多
关键词 天线设计 性能预测 代理模型 反向传播神经网络 粒子优化
在线阅读 下载PDF
基于列文伯格-马夸尔特-反向传播人工神经网络的X射线荧光光谱定量分析方法 被引量:3
15
作者 李芳 陆安祥 王纪华 《食品安全质量检测学报》 CAS 2016年第3期1152-1158,共7页
目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分... 目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分分析(PCA)提取特征参数,随机选取训练集、校正集、预测集样品个数分别为42、21、21。以均方差(MSE)、校正决定系数(R^2)、校正标准差(SEC)、验证决定系数(r^2)、预测标准差(SEP)和相对预测误差(RPD)为评价指标,同时分析比较LM-BP-ANN、BP-ANN、PLS三种算法的建模结果,并利用模型预测土壤重金属含量。结果实验确定隐含层神经元数目、学习率和迭代次数值依次为:6、0.1和8,3种建模方法中LM-BP-ANN效果最优,模型的相关系数高于0.98,表明模型有效。结论模型分析快速,可用于实际土壤样品中重金属含量的检测,对于改进X射线荧光光谱仪的检测准确度有着重要的意义。 展开更多
关键词 列文伯格-马夸尔特算法 反向传播神经网络 X射线荧光光谱
在线阅读 下载PDF
三轴压缩围压与峰值应力、应变关系的改进粒子群神经网络研究 被引量:4
16
作者 易达 刘洁荣 葛修润 《岩土力学》 EI CAS CSCD 北大核心 2007年第12期2639-2642,2648,共5页
岩石三轴压缩试验中,峰值应力和应变是应力-应变曲线重要的控制数据,通常情况下,随着围压的增大,峰值应力和应变也会相应增大。试验结果表明,围压与峰值应力、应变之间并非简单的线性关系。使用模拟退火技术对粒子群神经网络进行了改进... 岩石三轴压缩试验中,峰值应力和应变是应力-应变曲线重要的控制数据,通常情况下,随着围压的增大,峰值应力和应变也会相应增大。试验结果表明,围压与峰值应力、应变之间并非简单的线性关系。使用模拟退火技术对粒子群神经网络进行了改进,提出采用改进粒子群神经网络建立围压与峰值应力、应变非线性关系的方法。通过实例,说明所提方法是可行的。 展开更多
关键词 三轴压缩 应力-应变曲线 围压 峰值应力 人工神经网络 模拟退火 粒子优化算法
在线阅读 下载PDF
基于粒子群优化BP神经网络的脉象识别方法 被引量:16
17
作者 张开生 黄谦 《现代电子技术》 北大核心 2018年第3期96-100,106,共6页
针对传统脉诊存在易受主观因素影响、诊断结果可靠性不高等问题,提出基于粒子群优化BP神经网络的脉象识别方法。粒子群算法中评判粒子好坏的适应度函数采用神经网络的输出误差,以此获得最优粒子的位置向量,并把其值作为BP神经网络的初... 针对传统脉诊存在易受主观因素影响、诊断结果可靠性不高等问题,提出基于粒子群优化BP神经网络的脉象识别方法。粒子群算法中评判粒子好坏的适应度函数采用神经网络的输出误差,以此获得最优粒子的位置向量,并把其值作为BP神经网络的初始权值和阈值。在Matlab中建立基于BP算法、PSO-BP算法和GA-BP算法的三种ANN模型用于脉象信号的识别。实验结果表明,在识别脉象时,优化后的算法降低了传统BP神经网络的输出误差,提高了识别精度,PSO-BP算法明显改善了传统BP神经网络的泛化能力。 展开更多
关键词 脉象识别 粒子算法 输出误差 误差反向传播算法 神经网络 泛化能力
在线阅读 下载PDF
改进人工鱼群算法优化小波神经网络的变压器故障诊断 被引量:38
18
作者 贾亦敏 史丽萍 严鑫 《河南理工大学学报(自然科学版)》 CAS 北大核心 2019年第2期103-109,共7页
针对油浸式变压器故障类型的复杂难辨,结合油中气体分析法,提出一种基于改进人工鱼群算法优化小波神经网络的故障诊断模型。基于经典三层小波神经网络,采用粒子化的人工鱼群算法对小波神经网络输入和输出层的权值、小波神经元的伸缩和... 针对油浸式变压器故障类型的复杂难辨,结合油中气体分析法,提出一种基于改进人工鱼群算法优化小波神经网络的故障诊断模型。基于经典三层小波神经网络,采用粒子化的人工鱼群算法对小波神经网络输入和输出层的权值、小波神经元的伸缩和平移系数进行修正,通过引入动态反向学习策略实时优化人工鱼分布,迭代后半程采用基于柯西分布的自适应人工鱼视野范围提高算法精度。结果表明,该改进鱼群算法优化的小波神经网络相比标准粒子群算法优化小波神经网络和标准鱼群算法优化小波神经网络,诊断速度更快,准确率更高。 展开更多
关键词 变压器 故障诊断 小波神经网络 改进人工鱼算法 粒子优化算法 动态反向学习策略
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
19
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
基于BP神经网络的上海生鲜农产品物流需求预测 被引量:10
20
作者 郝杨杨 邹宇 《上海海事大学学报》 北大核心 2024年第1期39-45,69,共8页
针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重... 针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重、非对称学习因子提升粒子群(particle swarm optimization,PSO)算法的初始解质量,平衡算法的局部开发和全局搜索能力;利用IPSO算法优化BP神经网络的权值和阈值,解决BP神经网络收敛速度慢、容易陷入局部最优等问题。通过上海生鲜农产品物流需求预测实例对模型的有效性进行验证,结果显示:IPSO-BP神经网络模型在预测精度及收敛速度上均明显优于传统PSO-BP神经网络和BP神经网络模型。 展开更多
关键词 冷链物流 需求预测 改进粒子(IPSO)算法 反向传播(BP)神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部