期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
自适应K值的粒子群聚类算法 被引量:10
1
作者 白树仁 陈龙 《计算机工程与应用》 CSCD 北大核心 2017年第16期116-120,共5页
传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚类算法的基础上,结合K-means算法... 传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚类算法的基础上,结合K-means算法,提出了自适应K值的粒子群聚类算法。当算法收敛时,可通过比较不同K值时全局最优适应度值之间的关系来决定K值的增大与减小。实验表明改进的算法可以有效指导K值的选取,并且具有较好的聚类效果。 展开更多
关键词 粒子群聚类算法 K-MEANS算法 自适应K值 收敛
在线阅读 下载PDF
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
2
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 K-means粒子算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
基于遗传粒子群动态聚类算法的物流柔性分拣系统品规分配 被引量:1
3
作者 杜佳奇 杨旭东 +2 位作者 孙栋 张磊 王晋冰 《包装工程》 CAS 北大核心 2024年第5期126-134,共9页
目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态... 目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态聚类(GAPSO-K)算法进行求解。首先,结合各品规分拣量对品规相似系数进行改进,并将其作为适应度函数;然后在粒子群算法中对惯性权重因子进行改进,使其值可以进行自适应改变;最后,在粒子群动态聚类算法中引入遗传算法中的交叉变异扩大解的搜索范围,基于Matlab对文中的其他算法进行求解对比,求得结果在EM-plant中进行仿真验证。结果结合某烟草物流配送中心数据仿真验证,利用GAPSO-K算法处理订单的时间为234.5 s,较传统时间大幅度较少,有效提升了柔性物流分拣效率。结论采用该算法可充分发挥2种算法的优良性,具有更好的收敛性及寻优性,为柔性物流品规分配提供了新思路。 展开更多
关键词 品规分配 品规相似系数 惯性权重因子 遗传粒子动态算法
在线阅读 下载PDF
粒子群模糊聚类方法在病理图像分类中的应用 被引量:2
4
作者 邹刚 孙即祥 敖永红 《计算机工程与设计》 CSCD 北大核心 2009年第22期5155-5157,5161,共4页
结合模糊C均值(FCM)算法局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,使算法有很强的全局搜索能力。同时,采用Markov随机场与模糊聚类的耦合策略计算适应度函数,利用新的分类中心调整粒子位置,产生新的聚类中心,并将该方... 结合模糊C均值(FCM)算法局部搜索的特点,将PSO优化聚类结果作为后续FCM算法的初始值,使算法有很强的全局搜索能力。同时,采用Markov随机场与模糊聚类的耦合策略计算适应度函数,利用新的分类中心调整粒子位置,产生新的聚类中心,并将该方法应用于病理图像的分割。与传统的处理方法进行了比较,结果表明,该聚类更为准确且对病理图像的分割效果比原算法效果更好,但对于如何减少算法的运算量仍需作深入研究。 展开更多
关键词 粒子模糊算法 模糊C均值算法 MARKOV随机场 图像分割 病理图像
在线阅读 下载PDF
组合聚类和深度学习模型的风电场群风速预测 被引量:1
5
作者 樊雅洁 王聪 +2 位作者 张宏立 马萍 李新凯 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第12期71-80,共10页
为提高规模化风电场群的风速预测精度,进而保障中国电网的安全稳定运行,提出了一种基于粒子群-投影寻踪聚类算法结合NS-L-Transformer的风电场群短期风速混合预测模型。首先,通过变分模态分解、去伪分量和小波变换的方法对采集的风速数... 为提高规模化风电场群的风速预测精度,进而保障中国电网的安全稳定运行,提出了一种基于粒子群-投影寻踪聚类算法结合NS-L-Transformer的风电场群短期风速混合预测模型。首先,通过变分模态分解、去伪分量和小波变换的方法对采集的风速数据集进行处理,得到滤除噪声干扰后的风速数据集。其次,考虑风电场群间的风速空间关联特性,根据其风速波动特征,采用粒子群-投影寻踪聚类算法分析了风电场群间的空间相关性,根据算法所得到的评价指标对风电场群进行了场群关联性最优分类,并构造了分类后的高维风速数据集。最后,通过Transformer模型的自注意力机制结合LSTM模型的门控单元机制捕捉风速时间序列的局部特征,提出了NS-L-Transformer模型对所构造的具有局部特性的高维风速数据集进行了风速预测。选用中国东南某地区风电场群的风速数据进行了仿真分析,研究结果表明,采用分类后的高维数据集进行风速预测较单一风速数据集的预测精度有较大的提升;相较于Transformer模型,NS-L-Transformer的预测误差减少,从而验证了本研究所提混合预测模型的有效性。 展开更多
关键词 风速预测 风速数据降噪 风电场 粒子-投影寻踪算法 NS-L-Transformer模型
在线阅读 下载PDF
一种新的复杂网络聚类算法 被引量:8
6
作者 李峻金 向阳 +2 位作者 牛鹏 刘丽明 芦英明 《计算机应用研究》 CSCD 北大核心 2010年第6期2097-2099,共3页
揭示网络簇结构的复杂网络聚类方法研究具有重要的理论意义和应用价值。应用两种谱方法将复杂网络簇结构发现问题转换为空间数据聚类问题,并将粒子群聚类算法应用到对复杂网络簇结构的探测,提出了两种新的结合粒子群聚类的复杂网络簇结... 揭示网络簇结构的复杂网络聚类方法研究具有重要的理论意义和应用价值。应用两种谱方法将复杂网络簇结构发现问题转换为空间数据聚类问题,并将粒子群聚类算法应用到对复杂网络簇结构的探测,提出了两种新的结合粒子群聚类的复杂网络簇结构探测算法。最后在两类复杂网络上进行实验并对实验结果进行了比较分析,提出的新算法在聚类准确性方面效果更好。 展开更多
关键词 复杂网络 网络 网络簇结构 谱方法 粒子群聚类算法
在线阅读 下载PDF
基于聚类PSO算法的舰载机舰面多路径动态规划 被引量:18
7
作者 韩维 司维超 +1 位作者 丁大春 宋岩 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第5期610-614,共5页
对舰载机舰面多路径动态规划问题,提出了基于聚类粒子群(PSO,ParticleSwarm Optimization)算法进行解决的方法.首先建立了舰载机舰面多路径动态规划问题数学模型;其次,在建立航母舰面环境模型、舰载机"凸壳"模型、碰撞检测模... 对舰载机舰面多路径动态规划问题,提出了基于聚类粒子群(PSO,ParticleSwarm Optimization)算法进行解决的方法.首先建立了舰载机舰面多路径动态规划问题数学模型;其次,在建立航母舰面环境模型、舰载机"凸壳"模型、碰撞检测模型的基础上,利用聚类PSO算法进行问题求解;最后,通过编制程序对该解决方法予以实现.仿真结果表明利用聚类PSO算法所求解的结果比较精确,且计算效率也符合实际要求.因此基于聚类PSO算法对舰载机舰面多路径动态规划问题进行求解是可行的. 展开更多
关键词 舰载机 多路径动态规划 粒子算法算法 优化
在线阅读 下载PDF
基于稀疏表示的多幅图像快速超分辨率重建 被引量:5
8
作者 杨飚 邸苗 《传感器与微系统》 CSCD 2018年第1期43-45,共3页
针对基于稀疏表示的图像超分辨率重建(SRR)提高图像的重建质量,但一般存在计算量大、耗时长的问题,通过粒子群优化稀疏表示算法获得稀疏表示;对多幅图像的稀疏系数进行融合;根据融合后的稀疏系数重建得到高分辨率图像。实验结果表明:方... 针对基于稀疏表示的图像超分辨率重建(SRR)提高图像的重建质量,但一般存在计算量大、耗时长的问题,通过粒子群优化稀疏表示算法获得稀疏表示;对多幅图像的稀疏系数进行融合;根据融合后的稀疏系数重建得到高分辨率图像。实验结果表明:方法的重建速度更快,重建质量更高。 展开更多
关键词 超分辨率重建 稀疏表示 粒子优化算法 稀疏系数融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部