期刊文献+
共找到413篇文章
< 1 2 21 >
每页显示 20 50 100
核电厂环境辐射监测传感器网络中缺失值的粒子群算法-最小二乘支持向量机估计算法 被引量:3
1
作者 高雨晨 唐耀庚 《核电子学与探测技术》 CAS CSCD 北大核心 2014年第12期1508-1513,共6页
传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率... 传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率变化特点,利用节点的历史监测数据和相邻节点当前监测数据构造样本空间,对传感器节点监测数据缺失值进行估计。用实际数据进行的实验结果表明,所提出的估计算法的最大相对估计误差为3%,相关系数为0.926375,估计精度远高于基于BP神经网络模型的估计算法,也优于采用GA优化参数的LSSVM估计算法。 展开更多
关键词 环境辐射监测 无线传感网(WSN) 缺失值 估计 粒子优化最小乘支持向量
在线阅读 下载PDF
最小二乘支持向量机-粒子群算法在地下厂房围岩参数反分析中的应用 被引量:2
2
作者 杨继华 齐三红 +1 位作者 郭卫新 张党立 《隧道建设(中英文)》 北大核心 2018年第11期1800-1806,共7页
为准确确定地下厂房围岩的弹性模量、泊松比、黏聚力、内摩擦角、侧压力系数等参数,以正交设计、最小二乘支持向量机和粒子群算法等现代数学方法为基本手段,建立基于位移增量的围岩参数反分析方法。以CCS水电站大型地下厂房为研究背景,... 为准确确定地下厂房围岩的弹性模量、泊松比、黏聚力、内摩擦角、侧压力系数等参数,以正交设计、最小二乘支持向量机和粒子群算法等现代数学方法为基本手段,建立基于位移增量的围岩参数反分析方法。以CCS水电站大型地下厂房为研究背景,通过工程地质条件研究选取8#机组剖面作为分析对象,采用二维弹塑性有限元方法建立地质结构分析模型。以地下厂房洞室群分层开挖多点位移计实测位移增量为依据,对CCS水电站地下厂房区域围岩力学特性及地应力场特征进行反分析。研究结果表明:主厂房第Ⅵ层与第Ⅰ层开挖和主变室第4层与第1层开挖所产生的位移增量计算值与多点位移计实测值吻合较好,最大相对误差小于10%,说明采用最小二乘支持向量机和粒子群算法相结合的反分析方法在工程上是可行的,且效果较为显著。 展开更多
关键词 地下厂房 最小乘支持向量 粒子算法 有限元模拟 位移增量 反分析法
在线阅读 下载PDF
基于粒子群-最小二乘支持向量机算法的沥青拌和站中含氧量的软测量 被引量:1
3
作者 杨建红 房怀英 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期633-637,共5页
为了及时诊断热再生沥青搅拌站的燃烧、干燥状态,干燥滚筒的烟气含氧量检测具有重要的意义.首先通过沥青搅拌站组成和燃烧原理分析了影响烟气含氧量的相关过程参数,然后基于粒子群-最小二乘支持向量机算法(PSO-LSSVM)构建了干燥滚筒烟... 为了及时诊断热再生沥青搅拌站的燃烧、干燥状态,干燥滚筒的烟气含氧量检测具有重要的意义.首先通过沥青搅拌站组成和燃烧原理分析了影响烟气含氧量的相关过程参数,然后基于粒子群-最小二乘支持向量机算法(PSO-LSSVM)构建了干燥滚筒烟气含氧量软测量模型,通过4种不同的工况进行对比实验研究,实验结果表明:干燥滚筒烟气PSO-LSSVM含氧量软测量结果和氧传感器实测结果基本一致,最大测量误差为0.8%,能满足燃烧器的反馈控制要求.烟气含氧量的软测量为热再生沥青拌和站智能燃烧器的开发奠定基础. 展开更多
关键词 粒子-最小乘支持向量 沥青拌和站 含氧量 燃烧状态 燃烧器
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:3
4
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:125
5
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
基于云粒子群-最小二乘支持向量机的传感器温度补偿 被引量:30
6
作者 张朝龙 江巨浪 +3 位作者 李彦梅 陈世军 査长礼 王陈宁 《传感技术学报》 CAS CSCD 北大核心 2012年第4期472-477,共6页
针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的... 针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的参数进行优化选择,建立CMPSO-LSSVM传感器温度补偿模型。将该模型应用于振弦式传感器的温度补偿,通过实验证明了该温度补偿方法优于当前其他主要方法。 展开更多
关键词 云模型 粒子优化 最小乘支持向量 温度补偿
在线阅读 下载PDF
粒子群优化–最小二乘支持向量机算法在高压断路器机械故障诊断中的应用 被引量:25
7
作者 贾嵘 洪刚 +1 位作者 薛建辉 崔建武 《电网技术》 EI CSCD 北大核心 2010年第3期197-200,共4页
提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,... 提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,PSO)算法,优化LSSVM算法的参数。算例表明:PSO-LSSVM算法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统的支持向量机(support vector machine,SVM)算法,适用于高压断路器机械故障诊断。 展开更多
关键词 高压断路器 最小乘支持向量 粒子优化 故障诊断
在线阅读 下载PDF
基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法 被引量:35
8
作者 张春晓 张涛 《中国电机工程学报》 EI CSCD 北大核心 2010年第2期86-91,共6页
为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下... 为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下游温差作为LSSVM输入,含油率作为输出,对含油率与温差和总流量的关系进行训练,通过改进的PSO优化LSSVM的参数,建立了含油率的优化模型,并用测试数据对含油率的模型进行了比较。实验结果表明,基于改进的PSO-LSSVM含油率模型比PSO-LSSVM和遗传算法-最小二乘支持向量机模型运算速度快,比理论修正模型测量精度高,含油率在4%~60%时,平均测量误差为0.93%。 展开更多
关键词 热式油水两相流 含油率 铂电阻 最小乘支持向量 粒子算法 遗传算法
在线阅读 下载PDF
粒子群优化算法和最小二乘支持向量机的雷电过电压识别 被引量:6
9
作者 董建达 孙志能 +1 位作者 周开河 范良忠 《电网与清洁能源》 北大核心 2016年第6期35-40,共6页
为了提高雷电过电压的识别率,满足雷电过电压识别的实时性,提出了粒子群优化算法和最小二乘支持向量机的雷电过电压识别模型。首先提取多种特征作为雷电过电压识别的输入向量,然后采用最小二乘支持向量机设计雷电过电压识别的分类器,采... 为了提高雷电过电压的识别率,满足雷电过电压识别的实时性,提出了粒子群优化算法和最小二乘支持向量机的雷电过电压识别模型。首先提取多种特征作为雷电过电压识别的输入向量,然后采用最小二乘支持向量机设计雷电过电压识别的分类器,采用粒子群优化算法确定最合理的分类器参数,最后通过实验分析其有效性和优越性。结果表明,PSOLSSVM可以描述雷电过电压信号与特征间变化关系,提高了雷电过电压识别率,加快了雷电过电压识别速度,识别结果优于其他模型。 展开更多
关键词 雷电过电压 最小乘支持向量 特征提取 粒子优化算法
在线阅读 下载PDF
改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测 被引量:11
10
作者 黄国权 尤新华 《激光杂志》 北大核心 2015年第3期96-99,共4页
为了提高网络流量的预测准确性,针对最小二乘支持向量机参数优化方法的缺陷,提出一种改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测模型。首先将最小二乘支持向量机参数作为粒子初始位置,然后通过粒子群之间信息交流、互相... 为了提高网络流量的预测准确性,针对最小二乘支持向量机参数优化方法的缺陷,提出一种改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测模型。首先将最小二乘支持向量机参数作为粒子初始位置,然后通过粒子群之间信息交流、互相协作找到最优参数,并对惯性权重和学习因子进行改进,最后对网络流量数据进行重构,并采用最优参数的最小二乘支持向量机建立网络流量预测模型。实验结果表明,本文模型提高了网络流量的预测精度,并大幅度减少了训练时间,可以满足网络流量在线预测要求。 展开更多
关键词 网络流量 粒子优化算法 混沌理论 最小乘支持向量
在线阅读 下载PDF
组合最小二乘支持向量机与粒子群优化算法研究黄土湿陷性 被引量:4
11
作者 井彦林 仵彦卿 +1 位作者 杨丽娜 侯晓涛 《西安理工大学学报》 CAS 2006年第1期15-19,共5页
通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50... 通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50组试样实例应用分析,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,粒子群优化算法进行模型参数优化能够保证全局最优。验证结果表明模型的精度较高,有一定的实用价值。 展开更多
关键词 静力触探 最小乘支持向量 粒子算法 湿陷性
在线阅读 下载PDF
基于粒子群算法优化最小二乘支持向量机的电路故障诊断方法 被引量:12
12
作者 程思嘉 张昌宏 《兵器装备工程学报》 CAS 2016年第3期98-101,共4页
针对数/模混合电路故障的特点,采用将粒子群算法与最小二乘支持向量机相结合的故障诊断方法,在保证诊断过程准确率的基础上,实现多类故障的快速诊断。在诊断过程中,支持向量机的参数寻优过程存在随意性、盲目性和效率低等问题,采用改进... 针对数/模混合电路故障的特点,采用将粒子群算法与最小二乘支持向量机相结合的故障诊断方法,在保证诊断过程准确率的基础上,实现多类故障的快速诊断。在诊断过程中,支持向量机的参数寻优过程存在随意性、盲目性和效率低等问题,采用改进的粒子群算法优化支持向量机的参数,建立基于支持向量机的故障分类模型。实验结果表明,与其他方法相比,该方法提高了故障诊断的精度,具有明显的实用价值。 展开更多
关键词 故障诊断 粒子算法 最小乘支持向量
在线阅读 下载PDF
基于粒子群算法的最小二乘支持向量机电池状态估计 被引量:17
13
作者 王语园 李嘉波 张福 《储能科学与技术》 CAS CSCD 2020年第4期1153-1158,共6页
电池荷电状态(SOC)作为电池管理系统(BMS)重要参数之一,准确估计SOC尤为重要。由于SOC在估计过程中常会受到电压、电流、充放电效率等众多因素的影响,因此很难准确估计SOC。为了提高SOC的估计精度,本工作提出了基于最小二乘支持向量机(L... 电池荷电状态(SOC)作为电池管理系统(BMS)重要参数之一,准确估计SOC尤为重要。由于SOC在估计过程中常会受到电压、电流、充放电效率等众多因素的影响,因此很难准确估计SOC。为了提高SOC的估计精度,本工作提出了基于最小二乘支持向量机(LSSVM)机器学习的锂离子电池SOC估计模型。将该电池的电流、电压和温度作为模型的输入向量,SOC作为模型的输出向量,为了更好的获得LSSVM模型的参数,提出了利用自适应粒子群算法来进行参数优化,从而获得高精度SOC估计模型。通过恒流充放电实验采集的数据,并和未优化的粒子群优化的LSSVM、支持向量机(SVM)神经网络(NN)相比,所提模型的SOC估计精度误差为1.63%,验证了算法的有效性。 展开更多
关键词 锂离子电池 SOC 最小乘支持向量(LSSVM) 粒子算法
在线阅读 下载PDF
基于粒子群算法与最小二乘支持向量机的ET_0模拟 被引量:2
14
作者 鞠彬 王嘉毅 《水资源保护》 CAS CSCD 2016年第4期74-79,共6页
以月最高气温、月最低气温、月平均气温、平均风速、日照时数以及相对湿度6个气象因子的不同组合作为输入数据,以FAO Penman-Monteith公式计算结果作为标准值,构建基于粒子群优化算法与最小二乘支持向量机的ET_0预测模型(PSO-LSSVM)。... 以月最高气温、月最低气温、月平均气温、平均风速、日照时数以及相对湿度6个气象因子的不同组合作为输入数据,以FAO Penman-Monteith公式计算结果作为标准值,构建基于粒子群优化算法与最小二乘支持向量机的ET_0预测模型(PSO-LSSVM)。选取新疆额尔齐斯河流域哈巴河气象站1986—2013年的气象数据进行模型训练与预测,并与其他常用ET_0计算公式进行对比研究。结果表明,PSO-LSSVM模型能够很好地反映ET_0同各气象因子之间的非线性关系,其中气温条件是影响ET_0模拟精度最重要的因素,同时随着气象因子输入的减少PSO-LSSVM模型模拟精度有所下降;当分别基于辐射条件、温度条件计算时,PSO-LSSVM模型模拟结果较Priestley-Taylor公式、Hargreaves-Samani公式计算结果要优。基于多因子量化指标的ET_0预测模型实现了精度和实用性的统一,可为缺资料地区ET_0研究预报提供科学参考。 展开更多
关键词 参考作物蒸发蒸腾量 气象因子 粒子算法 最小乘支持向量 额尔齐斯河流域
在线阅读 下载PDF
基于粒子群算法的最小二乘支持向量机参数优化——以都江堰灌区联合调度为例 被引量:6
15
作者 黄佳 宁芊 《人民长江》 北大核心 2011年第7期86-90,共5页
针对都江堰内江缺少渠道的相关信息,无法建立准确水力学模型的问题,采用粒子群算法(PSO)优化最小二乘支持向量机(LS-SVM)参数的方法,确定流量与闸门开度之间单输入多输出的非线性关系,并以此为基础,利用决策原则及实际情况确定相应决策... 针对都江堰内江缺少渠道的相关信息,无法建立准确水力学模型的问题,采用粒子群算法(PSO)优化最小二乘支持向量机(LS-SVM)参数的方法,确定流量与闸门开度之间单输入多输出的非线性关系,并以此为基础,利用决策原则及实际情况确定相应决策逻辑,建立都江堰内江联合调度模型。模型采用MATLAB和C#语言实现。分析结果表明,与其他算法相比,PSO优化LS-SVM具有一定的优越性,结果达到实际工程要求。 展开更多
关键词 最小乘支持向量 粒子算法 单输入多输出 决策逻辑 联合调度模型 都江堰灌区
在线阅读 下载PDF
基于改进自适应杂交粒子群优化算法和最小二乘支持向量机的空中目标威胁评估 被引量:4
16
作者 许凌凯 杨任农 左家亮 《计算机应用》 CSCD 北大核心 2017年第9期2712-2716,2734,共6页
评估空中目标威胁程度是防空指挥控制系统的核心环节,评估的准确程度将对防空作战产生重大影响。针对传统评估方法实时性差、工作量大、评估精度不足、无法同时进行多目标评估等缺陷,提出了一种基于自适应杂交粒子群优化(ACPSO)算法和... 评估空中目标威胁程度是防空指挥控制系统的核心环节,评估的准确程度将对防空作战产生重大影响。针对传统评估方法实时性差、工作量大、评估精度不足、无法同时进行多目标评估等缺陷,提出了一种基于自适应杂交粒子群优化(ACPSO)算法和最小二乘支持向量机(LSSVM)的空中目标威胁评估方法。首先,根据空中目标态势信息构建威胁评估系统框架;然后,采用ACPSO算法对LSSVM中的正则化参数和核函数参数进行寻优,针对传统杂交机制的不足提出改进的交叉杂交方式,并使杂交概率自适应调整;最后,对比分析了各系统的训练和评估效果,并用优化后的系统实现多目标实时动态威胁评估。仿真结果表明,所提方法评估精度高,所需时间短,可同时进行多目标评估,为空中目标威胁评估提供了一种有效的解决方法。 展开更多
关键词 威胁评估 防空作战 自适应杂交粒子优化 最小乘支持向量
在线阅读 下载PDF
基于粒子群-最小二乘支持向量机模型的矿山爆破振动速度预测 被引量:10
17
作者 何理 刘易和 +3 位作者 李琳娜 陈江伟 姚颖康 刘昌邦 《金属矿山》 CAS 北大核心 2022年第7期145-150,共6页
爆破地震危害是矿山开采过程中最为显著的负面效应之一,准确预测质点峰值振动速度(PPV)对于有效预防爆破振动引发的建(构)筑物失稳破坏具有极大的工程实际意义。设计并开展了露天矿山开挖爆破现场监测试验,采用灰色关联分析法对PPV影响... 爆破地震危害是矿山开采过程中最为显著的负面效应之一,准确预测质点峰值振动速度(PPV)对于有效预防爆破振动引发的建(构)筑物失稳破坏具有极大的工程实际意义。设计并开展了露天矿山开挖爆破现场监测试验,采用灰色关联分析法对PPV影响因素进行敏感性分析,确定各影响因素之间的主次关系。在此基础上,建立最小二乘支持向量机(LS-SVM)模型对PPV进行预测,并通过粒子群算法(PSO)局部寻优确定LS-SVM模型中正则化参数和核函数宽度系数的最佳参数组合,最后将PSO-LSSVM模型预测结果与BP神经网络模型、LS-SVM模型及传统萨道夫斯基公式的预测结果进行了对比分析。结果表明:PSO-LSSVM模型对PPV预测的拟合相关系数(R^(2))、均方根误差(RMSE)、平均相对误差(MRE)及纳什系数(NSE)分别为97.38%、2.68%、1.36%和99.98%,PSO-LSSVM模型预测精度更高,且具有更好的泛化能力,用于多因素影响下的矿山爆破PPV预测切实可行。 展开更多
关键词 振动速度预测 敏感性分析 最小乘支持向量模型 粒子算法 泛化能力
在线阅读 下载PDF
基于改进自适应粒子群算法的混合核函数最小二乘支持向量机大坝变形预测 被引量:11
18
作者 梁耀东 栾元重 +2 位作者 刘方雨 纪赵磊 庄艳 《科学技术与工程》 北大核心 2021年第1期47-52,共6页
针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝... 针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝水平变形的时间序列预测方法。基于Mercer理论,将多项式核函数和高斯核函数进行线性组合,构建混合核函数,作为LSSVM模型的核函数,并以特征因子与大坝变形间的相互联系为基础,采用动态自适应惯性权重的PSO算法,对混合核函数的LSSVM模型进行参数寻优,以确保建立最佳LSSVM预测模型。将模型应用于丰满大坝,并与传统多项式核函数和传统高斯核函数的LSSVM模型进行对比仿真实验,对所提方法的有效性和准确性进行验证评估。结果表明,该模型在预测精度上有了明显提高,预测性能尤佳。可见改进自适应粒子群的混合核函数LSSVM模型对大坝变形的时间序列预测有良好的实用价值。 展开更多
关键词 混合核函数 大坝变形预测 最小乘支持向量(LSSVM) 自适应粒子算法 水平位移
在线阅读 下载PDF
基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法 被引量:46
19
作者 穆朝絮 张瑞民 孙长银 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期164-168,共5页
对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非... 对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非线性系统的控制量.该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器.通过对单变量多变量非线性系统进行仿真,证明了该预测控制方法是有效的,且具有良好的自适应能力和鲁棒性. 展开更多
关键词 非线性系统 预测控制 最小乘支持向量 粒子
在线阅读 下载PDF
基于粒子群优化最小二乘支持向量机的非线性AVO反演 被引量:11
20
作者 谢玮 王彦春 +3 位作者 刘建军 苏建龙 毛庆辉 何润 《石油地球物理勘探》 EI CSCD 北大核心 2016年第6期1187-1194,1052,共8页
为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二... 为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二乘支持向量机方法建立反射振幅与弹性参数之间的非线性模型;最后以此非线性模型对地震道集数据进行反演。模型数据和实际资料的反演结果表明,该方法克服了常规广义线性AVO反演在远炮检距及弹性参数纵向变化大等情况下的缺陷,可直接从实际地震道集数据中提取较高精度的地层弹性参数,具有快速稳健、抗噪能力强的优点。 展开更多
关键词 非线性AVO反演 粒子算法 最小乘支持向量 广义线性AVO反演
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部