期刊文献+
共找到806篇文章
< 1 2 41 >
每页显示 20 50 100
基于改进粒子群算法的BP神经网络模型研究 被引量:4
1
作者 姚尔果 闫秋粉 +1 位作者 南振岐 薛小虎 《佳木斯大学学报(自然科学版)》 CAS 2012年第1期107-109,共3页
为解决BP神经网络局部性收敛度慢的问题,提出了基于改进粒子群算法的BP神经网络模型.该方法通过粒子群进化速率动态调整惯性权重因子,提高了算法的收敛速度和全局搜索最优值的能力.提出的模型和改进的算法模拟仿真表明:该方法对收敛速... 为解决BP神经网络局部性收敛度慢的问题,提出了基于改进粒子群算法的BP神经网络模型.该方法通过粒子群进化速率动态调整惯性权重因子,提高了算法的收敛速度和全局搜索最优值的能力.提出的模型和改进的算法模拟仿真表明:该方法对收敛速度和精度有更好的拟合性. 展开更多
关键词 粒子算法 进化速率 惯性权重因子 bp神经网络
在线阅读 下载PDF
基于改进粒子群算法的BP神经网络在边坡稳定性评价中的应用 被引量:9
2
作者 胡卫东 曹文贵 《湖南理工学院学报(自然科学版)》 CAS 2014年第2期71-76,共6页
边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征.首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改... 边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征.首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改进的粒子群算法优化BP神经网络模型,将网络权值和阈值粒子化,通过引入粒子群进化度和粒子群聚合度实现惯性权重的动态变化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而增强算法对非线性问题的处理能力,加快了收敛速度;最后,通过与其它边坡稳定性评价算法进行比较分析,表明了本文研究算法的可行性与合理性. 展开更多
关键词 边坡稳定性 改进粒子算法 bp神经网络 优化 惯性权重
在线阅读 下载PDF
基于改进粒子群算法的BP神经网络在初始地应力场反演优化中的应用 被引量:4
3
作者 涂图 王建 张梦迪 《水电能源科学》 北大核心 2017年第12期123-126,139,共5页
为找到一种较为精确的方法反演出最接近实际情况的初始地应力场,首先对传统粒子群算法进行改进,以弥补传统粒子群算法搜索范围过于局限的缺陷,然后将改进粒子群算法与BP神经网络算法相结合,来解决BP神经网络收敛速度慢、精度不足等缺点... 为找到一种较为精确的方法反演出最接近实际情况的初始地应力场,首先对传统粒子群算法进行改进,以弥补传统粒子群算法搜索范围过于局限的缺陷,然后将改进粒子群算法与BP神经网络算法相结合,来解决BP神经网络收敛速度慢、精度不足等缺点,最后对某抽水蓄能电站初始地应力场的反演进行优化,并与BP神经网络的计算结果和实测值进行对比,发现该方法可提高优化精度。 展开更多
关键词 初始地应力场 改进粒子算法 bp神经网络 反演优化
在线阅读 下载PDF
基于粒子群算法的BP神经网络电价预测研究 被引量:5
4
作者 鲁娅楠 王金梅 孙帆 《科技创新与应用》 2018年第28期15-17,共3页
电力负荷预测是电力系统规划和运行的主要内容,而实时电价是影响负荷预测精度的一个重要因素,文章通过分析某电网电价历史数据,结合PSO算法和BP网络优点,提出一种PSO-BP神经网络预测模型,用PSO算法优化BP神经网络的初始权值和阈值,将电... 电力负荷预测是电力系统规划和运行的主要内容,而实时电价是影响负荷预测精度的一个重要因素,文章通过分析某电网电价历史数据,结合PSO算法和BP网络优点,提出一种PSO-BP神经网络预测模型,用PSO算法优化BP神经网络的初始权值和阈值,将电力系统电价的不确定性变为可预测性。Matlab仿真结果表明,PSO-BP神经网络预测模型收敛速度快和预测精度高,可运用到未来实际电价预测当中。 展开更多
关键词 bp神经网络 粒子算法 优化算法 电力负荷预测
在线阅读 下载PDF
基于粒子群优化的BP神经网络PID的加速度计组件温控算法
5
作者 魏国 朱旭 +3 位作者 高春峰 侯承志 程嘉奕 陈迈伦 《中国惯性技术学报》 北大核心 2025年第4期359-366,共8页
在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提... 在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提出了基于PSO-BPNN-PID控制器,利用粒子群优化算法和反向传播算法对神经网络PID控制器进行离线和在线的连接权值整定,实现石英挠性加速度计组件一体化温度控制算法,满足加速度计组件的自适应智能控制需求。仿真和实验结果表明,所提算法能够显著提升系统的温度稳定性,可实现±0.002℃的温度稳定控制。同时,验证了系统具备快速响应温度变化的能力,能够在短时间内将温度调整至设定值附近,并有效抑制超调现象。此外,实验还模拟了外部扰动情况,验证了系统在面对扰动时能够迅速恢复稳定状态,表现出优越的抗扰动能力,可以满足多种温度环境下的加速度计组件高精度温控应用需求。 展开更多
关键词 石英挠性加速度计 温度控制 粒子优化算法 bp神经网络
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
6
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 bp神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
7
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于粒子群优化BP神经网络的水质监测方法研究
8
作者 闫佳 刘倩男 刘诚 《现代信息科技》 2025年第3期153-156,163,共5页
近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络... 近年来,随着人工智能应用范围的逐渐扩大,各行各业都与人工智能存在或多或少的联系。传统的水质监测方法包括人工采样与实验室分析、现场检测和遥感技术等,这些方法存在时效性差、覆盖范围有限、数据不连续且成本高昂等问题。神经网络的出现大幅提升了传统技术在预测和数据处理方面的效果。在此基础上,通过粒子群算法对BP神经网络进行优化(PSO-BP),结果显示优化后的模型具有更高的准确度和更小的误差。这不仅进一步提高了水质监测的准确性和时效性,还显著降低了监测成本,节省了人力、物力和财力,为水质监测提供了一种新的技术手段。 展开更多
关键词 人工智能 水质监测 粒子算法 bp神经网络
在线阅读 下载PDF
计及改进粒子群算法优化BP神经网络的沼气产量软测量预测模型 被引量:1
9
作者 于雪彬 贾宇琛 +2 位作者 高立艾 周加栋 霍利民 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期643-650,共8页
为准确预测大中型沼气工程的日产气量,提出一种利用基于PSO-BP模型的软测量方法。首先,依托软测量技术选取参数;其次,以进料量、发酵温度、液位、罐内液压等参数作为输入量,沼气日产量为输出量进行模型建立。在此基础上,使用线性降低权... 为准确预测大中型沼气工程的日产气量,提出一种利用基于PSO-BP模型的软测量方法。首先,依托软测量技术选取参数;其次,以进料量、发酵温度、液位、罐内液压等参数作为输入量,沼气日产量为输出量进行模型建立。在此基础上,使用线性降低权重系数法和引入变异算子对粒子群算法进行改进,并对BP神经网络进行初始化来提高模型性能。通过实验比较改进PSO-BP模型、传统BP神经网络以及遗传算法优化的BP神经网络在预测沼气日产量方面的性能,采用改进的PSO-BP模型进行预测时,均方根误差(RMSE)、决定系数(R2)和平均绝对误差(MAE)分别为1.38440、0.84011和1.00910,证明改进PSO-BP模型结合软测量技术对进行复杂非线性牛粪高温厌氧发酵过程预测的可行性,同时可保证预测结果的精准性。 展开更多
关键词 生物质能 沼气 粒子优化算法 bp神经网络 软测量技术
在线阅读 下载PDF
基于GA-BP神经网络和改进粒子群算法的碰撞射流和冷却顶板复合空调系统优化
10
作者 齐贺闯 叶筱 +2 位作者 高延峰 亢燕铭 钟珂 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第1期110-117,共8页
对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_... 对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_(s)、送风速度v_(s)、冷却顶板内表面温度t_(c)、房间负荷Q_(c))之间的预测模型,通过相关性分析确定设计变量对运行性能影响的显著性并排序。结果表明,增大v_(s)可使Δt降低,但R_(PD)增大;增大t_(c)有助于降低Δt和R_(PD),但t_(a)升高;为使t_(a)下降,可通过降低t_(s)来实现,但室内空气质量变差。为确保IJV/RC复合空调能在保证室内热舒适的同时提供良好室内空气品质,利用改进粒子群算法对复合空调的运行性能进行多目标同时优化,建立不同房间负荷条件下的设计参量最优匹配关系。研究结果可为IJV/RC复合空调的优化设计和运行控制提供理论指导。 展开更多
关键词 碰撞射流通风 冷却顶板 GA-bp神经网络 粒子优化算法 多目标优化
在线阅读 下载PDF
基于粒子群优化神经网络的光网络节点信号异常数据提取
11
作者 何健 张瀚驰 《激光杂志》 北大核心 2025年第3期181-186,共6页
随着现代光通信网络的快速发展,光网络的安全性备受瞩目。为了保证信息的准确性,降低光网络异常信息出现的频率,提出基于粒子群优化光网络节点信号异常数据提取方法。首先,设计滤波器组对光网络节点信号展开频带处理。在此基础上构造判... 随着现代光通信网络的快速发展,光网络的安全性备受瞩目。为了保证信息的准确性,降低光网络异常信息出现的频率,提出基于粒子群优化光网络节点信号异常数据提取方法。首先,设计滤波器组对光网络节点信号展开频带处理。在此基础上构造判决统计量,将其作为依据判决处理各频带,实现节点信号增强处理;其次,依据经验模态算法对节点信号展开分解,通过筛选获取有效的IMF分量,计算其能量作为该节点信号特征,为后续异常数据的提取提供依据。最后,通过粒子群优化算法优化BP神经网络权值,将节点信号特征输入优化后的神经网络,实现光网络节点信号异常数据提取。经实验验证:该方法对节点信号增强效果好,提取IMF分量能量以及光网络节点信号异常数据精度高、稳定性好。 展开更多
关键词 网络节点信号 经验模态分解 bp神经网络 粒子算法 异常数据提取
在线阅读 下载PDF
基于粒子群优化神经网络的机械臂跟踪控制
12
作者 屈晓宇 王家隆 《沈阳工程学院学报(自然科学版)》 2025年第1期48-54,共7页
针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RB... 针对智能消防机械臂在无人情况下的系统操作精度问题,提出基于粒子群优化RBF神经网络自适应的控制方法。首先,采用RBF神经网络自适应控制算法跟踪机械臂各关节的轨迹;其次,采用粒子群优化算法对RBF神经网络的权值进行更新,并重新构建RBF神经网络;最后,通过MATLAB仿真验证所提出控制器的有效性和可行性。结果表明:与一般RBF神经网络自适应控制器相比,粒子群优化RBF神经网络自适应控制器在路径跟踪上具有更高的控制精度。 展开更多
关键词 智能消防机械臂 神经网络 自适应 粒子优化算法
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测
13
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 bp神经网络 ERA5再分析资料 粒子优化算法 风电功率预测
在线阅读 下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
14
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子优化算法
在线阅读 下载PDF
改进粒子群算法+BP神经网络在边坡可靠度分析中的应用
15
作者 徐小兵 《黑龙江交通科技》 2024年第8期41-45,共5页
为准确计算高边坡的稳定可靠度,提出了一种基于改进粒子群算法+BP神经网络的边坡可靠度分析方法。通过BP神经网络建立了高边坡神经网络模型,采用改进粒子群算法对边坡稳定系数进行了求解。结果表明:改进粒子群算法在不同测试函数的寻优... 为准确计算高边坡的稳定可靠度,提出了一种基于改进粒子群算法+BP神经网络的边坡可靠度分析方法。通过BP神经网络建立了高边坡神经网络模型,采用改进粒子群算法对边坡稳定系数进行了求解。结果表明:改进粒子群算法在不同测试函数的寻优精度最高;BP神经网络预测结果较好;该方法计算得到的边坡稳定可靠度相较于其他方法较小,计算结果偏于保守。 展开更多
关键词 bp神经网络 粒子算法 边坡可靠度 稳定系数
在线阅读 下载PDF
基于粒子群算法与广义回归神经网络的抛掷爆破有效抛掷率预测
16
作者 李福平 刘利杰 +5 位作者 唐晓骞 鲁文岐 王炜 王韬 白雪瑞 刘喜顺 《煤炭工程》 北大核心 2024年第S1期195-202,共8页
在抛掷爆破—拉斗铲倒堆工艺中,有效抛掷率是拉斗铲倒堆作业设计的重要参数,精确预测有效抛掷率对充分发挥拉斗铲生产能力、降低剥离成本、确保原煤生产持续与稳定等具有重要意义。有效抛掷率受多种复杂和不确定因素影响,准确构建有效... 在抛掷爆破—拉斗铲倒堆工艺中,有效抛掷率是拉斗铲倒堆作业设计的重要参数,精确预测有效抛掷率对充分发挥拉斗铲生产能力、降低剥离成本、确保原煤生产持续与稳定等具有重要意义。有效抛掷率受多种复杂和不确定因素影响,准确构建有效抛掷率影响因素与有效抛掷率之间的非线性函数非常困难。利用粒子群算法全局搜索能力及广义回归神经网络较强的非线性逼近能力,提出了一种基于粒子群算法与广义回归神经网络的有效抛掷率预测方法,并选取了抛掷爆破台阶高度、炸药单耗、底盘抵抗线、孔距、排距、煤层厚度等6个可量化、对有效抛掷率影响较大的指标构建了有效抛掷率预测模型。以黑岱沟露天煤矿127组抛掷爆破数据为样本,对基于粒子群算法的广义回归神经网络进行参数寻优与网络训练,获得了具有较强泛化能力的有效抛掷率预测广义回归神经网络模型。15组有效抛掷率预测试验表明,基于粒子群算法与广义回归神经网络进行有效抛掷率预测性能稳定、精度可靠,能够满足实际工程需要。 展开更多
关键词 露天煤矿 抛掷爆破 有效抛掷率 粒子算法 GRNN神经网络
在线阅读 下载PDF
基于粒子群优化BP神经网络PID的供热控制系统仿真研究
17
作者 李远航 高晓红 +1 位作者 姜庆龙 韩云峥 《吉林建筑大学学报》 CAS 2024年第1期72-78,共7页
供热系统技术属于清洁技术,但其能耗非常大,因此在供热系统中能源的损耗问题就显得尤为重要。与此同时,我国供暖过程多数是用传统PID对供暖系统进行控制,由于传统PID控制响应时间长、超调量高且受外界影响较大,造成能源未充分利用、浪... 供热系统技术属于清洁技术,但其能耗非常大,因此在供热系统中能源的损耗问题就显得尤为重要。与此同时,我国供暖过程多数是用传统PID对供暖系统进行控制,由于传统PID控制响应时间长、超调量高且受外界影响较大,造成能源未充分利用、浪费现象严重。因此针对此问题,提出了在供暖系统中采用一种基于粒子群优化BP神经网络PID的控制策略,不仅可以解决供暖时水温不稳定、水温上升时间长等问题,而且可以更好地解决能源未充分利用问题。本文建立供热系统的数学模型,然后利用Matlab中的Simulink设计并仿真粒子群BP神经网络PID控制器。实验结果表明,改进后的PID控制器抗干扰能力强且具有较好的鲁棒性,对供热控制系统有更好的控制效果。 展开更多
关键词 供热系统 粒子 粒子bp神经网络PID MATLAB
在线阅读 下载PDF
基于粒子群优化BP神经网络的电力通信网故障诊断 被引量:1
18
作者 孔汉辉 《山西电子技术》 2024年第5期36-39,共4页
为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法。采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方... 为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法。采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方法对比,结果表明,本文所提PSO-BPNN模型在诊断过程中只出现了2次误诊断,诊断结果的正确率高达97.22%,诊断效果更好,验证了所提方法的有效性和实用性。 展开更多
关键词 电力通信网 故障诊断 粒子优化算法 bp神经网络
在线阅读 下载PDF
基于改进PSO-BP神经网络的土遗址锚固力智能化预测研究
19
作者 殷运童 马剑 +4 位作者 白镇滔 芦苇 毛筱霏 倪娜 李东波 《力学学报》 北大核心 2025年第4期867-882,共16页
古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智... 古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智能化的重要课题.为此,引入自适应惯性权重和非对称学习因子改进传统粒子群算法,进而优化BP(backpropagation)神经网络的初始权重和阈值,构建一种新型粒子群优化BP神经网络(improved particle swarm optimization-backpropagation,IPSO-BP)锚固力智能化预测模型.以碳纤维楠竹锚杆为例,综合原位和模型试验,考虑锚固长度、直径、倾斜角度、灌浆体强度、孔径和碳纤维缠绕间距等影响因素,建立锚固力样本数据.数据学习和预测结果表明,IPSO-BP模型具有更好的鲁棒性、效率和精度,与传统粒子群优化BP神经网络模型相比均方根误差与平均绝对误差分别下降了61.3%和31.9%.基于Spearman相关系数理论,进一步分析了锚固力对不同影响因素的灵敏性,结果表明,锚固长度是影响锚固力的关键因素,而钻孔体积将直接影响锚固施工时对土遗址的损伤程度.进而以锚固长度和孔径作为设计变量,通过单目标和多目标优化分析,获得了锚固力最大化和钻孔体积最小化的最优设计方案.研究成果可为土遗址加固保护的智能化发展提供技术支撑和理论参考. 展开更多
关键词 土遗址 锚固力 粒子优化 bp 神经网络 预测模型
在线阅读 下载PDF
改进粒子群优化算法的BP神经网络在机车滚动轴承故障诊断中的应用 被引量:9
20
作者 陶海龙 辜琳丽 张胜召 《铁路计算机应用》 2012年第2期9-12,16,共5页
本文提出了一个基于改进粒子群优化算法的BP神经网络优化模型来进行轴承故障诊断,此模型融合粒子群优化算法的全局寻优能力和BP神经网络算法的局部搜索的优势,有效地防止了网络陷入局部极小值,同时又保证了诊断结果的精确性。仿真结果... 本文提出了一个基于改进粒子群优化算法的BP神经网络优化模型来进行轴承故障诊断,此模型融合粒子群优化算法的全局寻优能力和BP神经网络算法的局部搜索的优势,有效地防止了网络陷入局部极小值,同时又保证了诊断结果的精确性。仿真结果表明机车滚动轴承故障得到了有效诊断。相比于常规的BP神经网络模型,此方法不仅改进网络的收敛速度并且提高了预测准确性。 展开更多
关键词 滚动轴承 粒子优化算法 bp神经网络 诊断
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部