期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
1
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子优化算法
在线阅读 下载PDF
基于改进粒子群优化算法和极限学习机的混凝土坝变形预测 被引量:34
2
作者 李明军 王均星 王亚洲 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2019年第11期1136-1144,共9页
混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网... 混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网络模型收敛速度慢和过度拟合等问题,提出了一种基于改进型粒子群优化算法选取极限学习机(ELM-IPSO)最优参数的大坝变形预测模型.针对传统粒子群算法搜索时间长、容易陷入局部最优的特点,采用自适应惯性权重和动态调整学习因子,对粒子群算法进行了改进.研究表明,IPSO算法提高了粒子群优化的全局搜索能力,提高了计算效率.应用IPSO优化ELM模型的初始权值和阈值.通过东江混凝土拱坝的实测资料,验证ELM-IPSO模型的预测性能.将计算结果与BPNN模型、ELM模型和传统ELM-PSO模型的结果进行比较.BPNN模型、ELM模型、ELM-PSO模型和ELM-IPSO模型的平方相关系数R2分别为89.15%、91.13%、93.87%和94.36%.ELM模型的R2大于BPNN模型,说明ELM模型比常规的BPNN模型预测精度更高,泛化性能更好.ELM-PSO模型的预测精度大于ELM模型,说明PSO对ELM的优化在提高预测精度方面具有良好的作用.4个模型中,ELM-IPSO模型的R^2最大,预测精度最高,这表明提出的ELM-IPSO模型能够有效提高混凝土坝变形的预测能力. 展开更多
关键词 混凝土大坝变形 极限学习 BP神经网络 改进的粒子优化算法
在线阅读 下载PDF
基于粒子群算法优化极限学习机的无源目标定位算法 被引量:3
3
作者 傅彬 《计算机应用与软件》 CSCD 2015年第11期325-328,共4页
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进... 为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 展开更多
关键词 位置信息场 目标定位粒子优化算法极限学习
在线阅读 下载PDF
粒子群算法优化极限学习机的旋风分离器压降建模 被引量:3
4
作者 王兆熙 延会波 张玮 《天然气化工—C1化学与化工》 CAS 北大核心 2021年第4期119-125,共7页
旋风分离器是化工行业常用气固分离装置,准确地预测旋风分离器的压降性能,并对其进行设计和放大至关重要。当前旋风分离器压降模型存在建模时间较长和预测精度较差的问题,为此采用极限学习机(Extreme learning machine,ELM)对旋风分离... 旋风分离器是化工行业常用气固分离装置,准确地预测旋风分离器的压降性能,并对其进行设计和放大至关重要。当前旋风分离器压降模型存在建模时间较长和预测精度较差的问题,为此采用极限学习机(Extreme learning machine,ELM)对旋风分离器压降进行了建模,并引入粒子群优化(Particle swarm optimization,PSO)算法对ELM输入层到隐含层连接权值和阈值进行了优化,以降低ELM对隐含层节点数的需求,提高模型准确度和稳定性。研究表明,优化结果较标准ELM降低了对隐含层节点数的需求,模型测试集R2和MSE分别为0.9978和2.443×10^(-4),运行时间为15.74 s,相比标准ELM模型、统计模型和人工神经网络模型,所建基于PSO-ELM的旋风分离器压降模型有更好的泛化能力和鲁棒性,极大地缩短了预测时间。PSO-ELM建模算法可以作为一种有效的方法,为旋风分离器性能分析提供指导。 展开更多
关键词 极限学习 粒子优化算法 旋风分离器 建模 压降
在线阅读 下载PDF
基于探测粒子群的小波核极限学习机算法 被引量:2
5
作者 陈晓青 陆慧娟 +1 位作者 关伟 郑文斌 《计算机科学》 CSCD 北大核心 2016年第S1期77-80,共4页
在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKEL... 在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKELM参数优化,最终得到分类效果较优的DPSO-WKELM分类器。通过采用UCI基因数据进行仿真,将该分类结果与径向基核极限学习机(KELM)、WKELM等算法结果进行比较,得出所提算法具有较高的分类精度。 展开更多
关键词 极限学习 探测粒子 算法优化 分类精度
在线阅读 下载PDF
基于改进粒子群算法优化的染色木材颜色检测算法研究 被引量:2
6
作者 管雪梅 吴言 杨渠三 《林产工业》 北大核心 2024年第1期1-7,共7页
为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并... 为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并引入非线性惯性权重和新的位置与速度更新策略改进粒子群算法,以消除其易陷入局部最优的缺点。此外,以L^(*)、a^(*)、b^(*)平均绝对误差为评价指标,与基础ELM模型及其他模型作对比,发现优化后的模型平均绝对误差为0.16,测色效果相较于基础ELM的0.68、麻雀算法优化的ELM的0.37等具有明显优势,这对于提高木材染色生产效率具有重要意义。 展开更多
关键词 粒子算法 极限学习 反射率 惯性权重 全局优化
在线阅读 下载PDF
基于改进粒子群优化极限学习机的弹丸参数辨识 被引量:8
7
作者 夏悠然 管军 易文俊 《系统工程与电子技术》 EI CSCD 北大核心 2023年第2期521-529,共9页
针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。... 针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。该算法利用自适应变异粒子群算法寻优产生极限学习机的输入权重和隐含层阈值,有效改善算法性能。仿真实验表明,利用自适应变异粒子群优化极限学习机算法辨识弹丸气动参数,精度高、收敛速度快,能够充分满足实际工程需要。 展开更多
关键词 弹丸 气动参数辨识 极限学习 粒子优化算法 自适应更新策略 粒子变异策略
在线阅读 下载PDF
基于手机传感器识别行人步态的PSO-ELM算法
8
作者 郭英 李兆博 +1 位作者 刘如飞 黄昊东 《中国惯性技术学报》 EI CSCD 北大核心 2024年第8期795-802,811,共9页
针对因手机携带位置不同对传感器产生干扰而导致行人步态识别准确率降低的问题,提出了一种粒子群优化极限学习机(PSO-ELM)识别算法。首先,基于极限学习机(ELM)分类方法,借助分层ELM多层降维的特点,利用粒子群优化算法对ELM算法参数进行... 针对因手机携带位置不同对传感器产生干扰而导致行人步态识别准确率降低的问题,提出了一种粒子群优化极限学习机(PSO-ELM)识别算法。首先,基于极限学习机(ELM)分类方法,借助分层ELM多层降维的特点,利用粒子群优化算法对ELM算法参数进行寻优,设计有效识别行人手机携带位置的分层PSO-ELM分类方法。然后,通过线性判别分析的降维算法和PSO-ELM完成对行人步态的有效识别。实验使用Android手机对五种携带位置四种步态下的加速度和角速度数据进行采集,结果表明:在识别手机携带位置层面,训练集与测试集的识别准确率分别达到99.54%、99.47%;在识别行人步态层面,两种准确率分别达到95.74%、95.31%,证明所提算法具有较高的步态识别准确率。 展开更多
关键词 行人步态识别 传感器 极限学习 粒子优化算法 线性判别分析
在线阅读 下载PDF
改进粒子群优化的极限学习机软测量建模方法 被引量:12
9
作者 盛晓晨 史旭东 熊伟丽 《计算机应用研究》 CSCD 北大核心 2020年第6期1683-1687,共5页
工业过程常含有显著的非线性、时变等复杂特性,传统的极限学习机有时无法充分利用数据信息,所建软测量模型预测性能较差。为了提高极限学习机的泛化能力和预测精度,提出一种改进粒子群优化的极限学习机软测量建模方法。首先,利用高斯函... 工业过程常含有显著的非线性、时变等复杂特性,传统的极限学习机有时无法充分利用数据信息,所建软测量模型预测性能较差。为了提高极限学习机的泛化能力和预测精度,提出一种改进粒子群优化的极限学习机软测量建模方法。首先,利用高斯函数正态分布的特点实现惯性权重的自适应更新,并线性变化学习因子以提高粒子群优化算法的收敛速度和搜索性能;然后将该算法用于优化极限学习机的惩罚系数和核宽,得到一组最优超参数;最后将该方法应用于脱丁烷塔过程软测量建模中。仿真结果表明,优化后的极限学习机模型预测精度有明显的提高,验证了所提方法不仅是可行的,而且具有良好的预测精度和泛化性能。 展开更多
关键词 软测量建模 极限学习 粒子优化算法 自适应权重
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
10
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 学习 粒子优化的支持向量回归(PSO-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
一种优化极限学习机的果园湿度预测方法 被引量:9
11
作者 匡亮 华驰 +1 位作者 邓小龙 施珮 《传感技术学报》 CAS CSCD 北大核心 2019年第3期418-423,共6页
针对传统水蜜桃种植过程中环境监测实时性差、人力物力浪费严重的现状,通过无线传感网络技术(WSN),本文在果园环境监测系统的基础上提出一种优化极限学习机的湿度预测方法(PSO-ELM)。该方法首先使用主成分分析法(PCA)对环境监测数据进... 针对传统水蜜桃种植过程中环境监测实时性差、人力物力浪费严重的现状,通过无线传感网络技术(WSN),本文在果园环境监测系统的基础上提出一种优化极限学习机的湿度预测方法(PSO-ELM)。该方法首先使用主成分分析法(PCA)对环境监测数据进行分析,实现数据的降维。然后利用粒子群算法(PSO)优化极限学习机(ELM)的初始权值、偏置,对训练集和测试集分别进行测试。以果园环境监测系统中9天(1296组)数据为测试对象,将PSO-ELM算法与线性回归、ELM神经网络进行对比,验证预测方法的可靠性。实验结果表明,该预测算法的RMSE、MAPE和MAE分别为0.503 8、0.005 1和0.397 4,能较好的预测环境湿度信息。 展开更多
关键词 无线传感网 湿度 粒子优化 极限学习 预测算法
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价
12
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子优化算法(PSO) 极限学习(ELM) 水质评价
在线阅读 下载PDF
基于特征选择和优化极限学习机的短期电力负荷预测 被引量:33
13
作者 商立群 李洪波 +2 位作者 侯亚东 黄辰浩 张建涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第4期165-175,共11页
针对负荷预测过程中特征量难以确定以及极限学习机(ELM)存在因随机产生的初始权值和阈值导致输出稳定性低的问题,提出了基于格拉姆施密特正交化与皮尔逊相关性分析相结合的特征选择方法(GSO-PCA)和改进灰狼算法(IGWO)优化ELM的短期电力... 针对负荷预测过程中特征量难以确定以及极限学习机(ELM)存在因随机产生的初始权值和阈值导致输出稳定性低的问题,提出了基于格拉姆施密特正交化与皮尔逊相关性分析相结合的特征选择方法(GSO-PCA)和改进灰狼算法(IGWO)优化ELM的短期电力负荷预测模型(IGWO-ELM)。对两种不同类型的特征分别使用GSO算法和PCA进行优选,并根据平均绝对百分比误差(MAPE)确定最优特征集,与传统的经验特征选择、最大互信息系数特征选择、随机森林特征选择比较,GSO-PCA特征选择的MAPE分别降低了1.3%、0.55%和0.83%,验证了其优越性;将Tent混沌映射和粒子群优化算法(PSO)融入到灰狼优化算法中,得到IGWO,并利用两种典型的测试函数对IGWO性能进行测试,证明了其具有更强的寻优能力;使用IGWO算法对ELM的初始权值和阈值进行动态优化,建立IGWO-ELM短期负荷预测模型。将拟合优度检验系数、平均绝对误差、均方根误差和MAPE作为评价指标,结合实例分析,与传统的模型进行比较。仿真结果表明:所提预测模型得到的4个评价指标分别为0.9978、54.90 kW、72.02 kW和1.52%,明显优于其他模型,验证了所提模型的有效性和优越性。 展开更多
关键词 短期电力负荷预测 极限学习 灰狼优化算法 粒子优化算法 Tent混沌映射 格拉姆施密特正交化 皮尔逊相关性分析
在线阅读 下载PDF
基于优化极限学习机的工业控制系统入侵检测 被引量:12
14
作者 赵国新 陈志炼 +3 位作者 魏战红 刘昱 宋非凡 郭家伟 《计算机工程与设计》 北大核心 2020年第3期608-613,共6页
为解决极限学习机(ELM)随机给定输入权值和隐含层结点的阈值,导致泛化能力和精度不理想的问题,提出混合自适应量子粒子群(HAQPSO)优化算法对输入权值和隐含层结点的阈值进行参数寻优。在量子粒子群优化算法的基础上,加入差分策略和Levy... 为解决极限学习机(ELM)随机给定输入权值和隐含层结点的阈值,导致泛化能力和精度不理想的问题,提出混合自适应量子粒子群(HAQPSO)优化算法对输入权值和隐含层结点的阈值进行参数寻优。在量子粒子群优化算法的基础上,加入差分策略和Levy飞行策略,采用自适应改变的控制方法控制收缩-扩张系数,有效避免算法的早熟,增强算法全局寻优能力,通过对典型函数的测试验证了该算法的优越性。构建基于HAQPSO优化ELM的工控入侵检测模型,将仿真结果与其它算法进行比较,HAQPSO优化后的ELM在准确率、精确率和召回率等指标上都有明显提升。 展开更多
关键词 极限学习 量子粒子优化算法 差分策略 Levy飞行策略 工控入侵检测
在线阅读 下载PDF
基于核极限学习机的下肢关节力矩预测方法 被引量:1
15
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯核函数 极限学习 粒子优化算法 遗传算法 均方根误差 相关系数
在线阅读 下载PDF
基于VMD-PSO-多核极限学习机的短期负荷预测 被引量:21
16
作者 吴松梅 蒋建东 +1 位作者 燕跃豪 鲍薇 《电力系统及其自动化学报》 CSCD 北大核心 2022年第5期18-25,共8页
为提高短期负荷预测精度,解决核极限学习机单一核函数难以适应负荷多数据特征的问题,提出了一种基于变分模态分解与粒子群优化的多核极限学习机模型。该模型采用变分模态分解技术将原始负荷序列分解为具有不同特征频率的子序列,并对每... 为提高短期负荷预测精度,解决核极限学习机单一核函数难以适应负荷多数据特征的问题,提出了一种基于变分模态分解与粒子群优化的多核极限学习机模型。该模型采用变分模态分解技术将原始负荷序列分解为具有不同特征频率的子序列,并对每个子序列建立预测模型。负荷预测模型采用粒子群优化的多核极限学习机,其使用混合核函数代替单一的核函数,使其在不同的参数下不仅有良好的局部搜索能力,同时也加强了全局搜索能力。实验表明,该模型拥有更好的回归精度和泛化能力,能够得到更精确的预测结果。 展开更多
关键词 变分模态分解 粒子优化算法 核函数 多核极限学习 短期负荷预测
在线阅读 下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法 被引量:1
17
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子优化算法 极限学习 水淹层识别
在线阅读 下载PDF
基于PSO-ELM的双目视觉摄像机标定 被引量:8
18
作者 周东凯 李刚 王学琨 《广西大学学报(自然科学版)》 CAS 北大核心 2014年第6期1285-1290,共6页
针对极限学习机(extreme learning machine,ELM)在隐层节点数较少时标定精度较低的问题,利用粒子群优化算法(particle swarm optimization,PSO)与极限学习机相结合的方法对双目视觉摄像机进行标定。在标定过程中,ELM直接描述图像信息与... 针对极限学习机(extreme learning machine,ELM)在隐层节点数较少时标定精度较低的问题,利用粒子群优化算法(particle swarm optimization,PSO)与极限学习机相结合的方法对双目视觉摄像机进行标定。在标定过程中,ELM直接描述图像信息与三维信息之间的非线性关系,然后利用PSO优化ELM的输入权值与隐层阈值。实验结果表明,与ELM相比较,基于粒子群极限学习机(PSO-ELM)的双目视觉摄像机标定方法能仅用较少隐层节点数获得较高精度。 展开更多
关键词 摄像标定 极限学习 粒子优化算法 双目视觉
在线阅读 下载PDF
基于极限学习机的风电机组主轴承故障诊断方法 被引量:16
19
作者 卢锦玲 绳菲菲 赵洪山 《可再生能源》 CAS 北大核心 2016年第11期1588-1594,共7页
针对传统故障诊断方法在风电机组主轴承的故障诊断中诊断准确率不高的问题,引入了一种改进粒子群优化(PSO)算法,并结合交叉验证(CV)优化极限学习机(ELM)的方法。利用ELM建立故障诊断模型,采用主轴承振动信号的代表性时域特征参数作为模... 针对传统故障诊断方法在风电机组主轴承的故障诊断中诊断准确率不高的问题,引入了一种改进粒子群优化(PSO)算法,并结合交叉验证(CV)优化极限学习机(ELM)的方法。利用ELM建立故障诊断模型,采用主轴承振动信号的代表性时域特征参数作为模型输入,结合改进PSO算法和CV用于模型的参数优化,用于风电机组主轴承的故障诊断。实例分析表明,文章提出的方法可以快速、有效地诊断风电机组主轴承的故障,与LS-SVM,SVM和BPNN等方法相比,诊断准确率更高。 展开更多
关键词 风电 主轴承 故障诊断 极限学习 改进粒子优化算法
在线阅读 下载PDF
基于自适应极限学习机的变压器故障识别方法 被引量:32
20
作者 吴杰康 覃炜梅 +2 位作者 梁浩浩 金尚婷 罗伟明 《电力自动化设备》 EI CSCD 北大核心 2019年第10期181-186,共6页
针对变压器状态数据累积规模和复杂程度均增大的情况,单一智能算法进行数据处理的能力有限、精度低,提出了基于自适应极限学习机的变压器故障识别方法。利用免疫算法(IA)的多样性调节机制和存储机制对粒子种群进行优、劣分类,对优、劣... 针对变压器状态数据累积规模和复杂程度均增大的情况,单一智能算法进行数据处理的能力有限、精度低,提出了基于自适应极限学习机的变压器故障识别方法。利用免疫算法(IA)的多样性调节机制和存储机制对粒子种群进行优、劣分类,对优、劣粒子分别采用不同的进化方式。经IA改进的粒子群优化(PSO)算法有效克服了种群容易早熟从而导致进化停滞的缺点,提高了全局寻优能力。在参数寻优的基础上,根据寻优输出结果建立变压器故障识别模型。实验计算结果表明所提方法比极限学习机(ELM)、粒子群优化极限学习机(PSO-ELM)、遗传算法优化极限学习机(GA-ELM)方法的故障识别精度高。 展开更多
关键词 电力变压器 故障识别 免疫算法 粒子优化算法 极限学习
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部